loader
publication

Innovation

Welcome to our research page featuring recent publications in the field of biostatistics and epidemiology! These fields play a crucial role in advancing our understanding of the causes, prevention, and treatment of various health conditions. Our team is dedicated to advancing the field through innovative studies and cutting-edge statistical analyses. On this page, you will find our collection of research publications describing the development of new statistical methods and their application to real-world data. Please feel free to contact us with any questions or comments.

Filter

Topic

History

Showing 1 of 2 publications

ISPE-endorsed guidance in using electronic health records for comparative effectiveness research in COVID-19: opportunities and trade-offs

As the scientific research community along with health care professionals and decision-makers around the world fight tirelessly against the COVID-19 pandemic, the need for comparative effectiveness research (CER) on preventive and therapeutic interventions for COVID-19 is immense. Randomized controlled trials markedly underrepresent the frail and complex patients seen in routine care, and they do not typically have data on long-term treatment effects. The increasing availability of electronic health records (EHRs) for clinical research offers the opportunity to generate timely real-world evidence reflective of routine care for optimal management of COVID-19. However, there are many potential threats to the validity of CER based on EHR data that are not originally generated for research purposes. To ensure unbiased and robust results, we need high-quality healthcare databases, rigorous study designs, and proper implementation of appropriate statistical methods. We aimed to describe opportunities and challenges in EHR-based CER for COVID-19-related questions and to introduce best practices in pharmacoepidemiology to minimize potential biases. We structured our discussion into the following topics: 1) Study population identification based on exposure status; 2) Ascertainment of outcomes; 3) Common biases and potential solutions; and 4) Data operational challenges specific to COVID-19 CER using EHR. We provide structured guidance for the proper conduct and appraisal of drug and vaccine effectiveness and safety research using EHR data for the pandemic. This manuscript is endorsed by the International Society for Pharmacoepidemiology (ISPE).

Journal: Clin Pharma and Therapeutics |
Year: 2022
Citation: 8
Individual participant data meta-analysis to examine interactions between treatment effect and participant-level covariates: statistical recommendations for conduct and planning

Precision medicine research often searches for treatment-covariate interactions, which refers to when a treatment effect (eg, measured as a mean difference, odds ratio, hazard ratio) changes across values of a participant-level covariate (eg, age, gender, biomarker). Single trials do not usually have sufficient power to detect genuine treatment-covariate interactions, which motivate the sharing of individual participant data (IPD) from multiple trials for meta-analysis. Here, we provide statistical recommendations for conducting and planning an IPD meta-analysis of randomized trials to examine treatment-covariate interactions. For conduct, two-stage and one-stage statistical models are described, and we recommend: (i) interactions should be estimated directly, and not by calculating differences in meta-analysis results for subgroups; (ii) interaction estimates should be based solely on within-study information; (iii) continuous covariates and outcomes should be analyzed on their continuous scale; (iv) nonlinear relationships should be examined for continuous covariates, using a multivariate meta-analysis of the trend (eg, using restricted cubic spline functions); and (v) translation of interactions into clinical practice is nontrivial, requiring individualized treatment effect prediction. For planning, we describe first why the decision to initiate an IPD meta-analysis project should not be based on between-study heterogeneity in the overall treatment effect; and second, how to calculate the power of a potential IPD meta-analysis project in advance of IPD collection, conditional on characteristics (eg, number of participants, standard deviation of covariates) of the trials (potentially) promising their IPD. Real IPD meta-analysis projects are used for illustration throughout.

Journal: Stat Med |
Year: 2020
Citation: 83