loader
publication

Innovation

Welcome to our research page featuring recent publications in the field of biostatistics and epidemiology! These fields play a crucial role in advancing our understanding of the causes, prevention, and treatment of various health conditions. Our team is dedicated to advancing the field through innovative studies and cutting-edge statistical analyses. On this page, you will find our collection of research publications describing the development of new statistical methods and their application to real-world data. Please feel free to contact us with any questions or comments.

Filter

Topic

History

Showing 1 of 3 publications

Methods for comparative effectiveness based on time to confirmed disability progression with irregular observations in multiple sclerosis

Real-world data sources offer opportunities to compare the effectiveness of treatments in practical clinical settings. However, relevant outcomes are often recorded selectively and collected at irregular measurement times. It is therefore common to convert the available visits to a standardized schedule with equally spaced visits. Although more advanced imputation methods exist, they are not designed to recover longitudinal outcome trajectories and typically assume that missingness is non-informative. We, therefore, propose an extension of multilevel multiple imputation methods to facilitate the analysis of real-world outcome data that is collected at irregular observation times. We illustrate multilevel multiple imputation in a case study evaluating two disease-modifying therapies for multiple sclerosis in terms of time to confirmed disability progression. This survival outcome is derived from repeated measurements of the Expanded Disability Status Scale, which is collected when patients come to the healthcare center for a clinical visit and for which longitudinal trajectories can be estimated. Subsequently, we perform a simulation study to compare the performance of multilevel multiple imputation to commonly used single imputation methods. Results indicate that multilevel multiple imputation leads to less biased treatment effect estimates and improves the coverage of confidence intervals, even when outcomes are missing not at random.

Journal: Stat Methods Med Res |
Year: 2023
Real-time imputation of missing predictor values in clinical practice

Aims: Use of prediction models is widely recommended by clinical guidelines, but usually requires complete information on all predictors, which is not always available in daily practice. We aim to describe two methods for real-time handling of missing predictor values when using prediction models in practice.

Methods and results: We compare the widely used method of mean imputation (M-imp) to a method that personalizes the imputations by taking advantage of the observed patient characteristics. These characteristics may include both prediction model variables and other characteristics (auxiliary variables). The method was implemented using imputation from a joint multivariate normal model of the patient characteristics (joint modelling imputation; JMI). Data from two different cardiovascular cohorts with cardiovascular predictors and outcome were used to evaluate the real-time imputation methods. We quantified the prediction model's overall performance [mean squared error (MSE) of linear predictor], discrimination (c-index), calibration (intercept and slope), and net benefit (decision curve analysis). When compared with mean imputation, JMI substantially improved the MSE (0.10 vs. 0.13), c-index (0.70 vs. 0.68), and calibration (calibration-in-the-large: 0.04 vs. 0.06; calibration slope: 1.01 vs. 0.92), especially when incorporating auxiliary variables. When the imputation method was based on an external cohort, calibration deteriorated, but discrimination remained similar.

Conclusions: We recommend JMI with auxiliary variables for real-time imputation of missing values, and to update imputation models when implementing them in new settings or (sub)populations.

Journal: EHJ Digital Health |
Year: 2020
Citation: 7
Multiple imputation for multilevel data with continuous and binary variables

We present and compare multiple imputation methods for multilevel continuous and binary data where variables are systematically and sporadically missing. The methods are compared from a theoretical point of view and through an extensive simulation study motivated by a real dataset comprising multiple studies. The comparisons show why these multiple imputation methods are the most appropriate to handle missing values in a multilevel setting and why their relative performances can vary according to the missing data pattern, the multilevel structure and the type of missing variables. This study shows that valid inferences can only be obtained if the dataset gathers a large number of clusters. In addition, it highlights that heteroscedastic multiple imputation methods provide more accurate inferences than homoscedastic methods, which should be reserved for data with few individuals per cluster. Finally, guidelines are given to choose the most suitable multiple imputation method according to the structure of the data.

Journal: Stat Sci |
Year: 2018
Citation: 76