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Prediction

Risk prediction = foreseeing / foretelling
... (probability) of something that is yet unknown

Turn available information (predictors) into a statement
about the probability:

... of having a particular disease -> diagnosis
... of developing a particular event -> prognosis

Use of prognostic information:
— to inform patients and their families
— to guide treatment and other clinical decisions

— to create risk groups ::
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How do we predict?

« Combine information from multiple predictors
— Subject characteristics (e.g. age, gender)
— History and physical examination results (e.g. blood pressure)
— Imaging results
- (Bio)markers (e.g. coronary plaque)

» Develop a multivariable statistical model
— Need for patient data from large cohort studies
— Many strategies available (Regression, decision trees, neural networks, ...)
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Last modified date: 05/16/2011

The Breast Cancer Risk Assessment Tool is an interactive tool designed by scientists at the
National Cancer Institute (NCI) and the National Surgical Adjuvant Breast and Bowel Project
(NSABF) to estimate a woman's risk of developing invasive breast cancer. See Aboutthe Tool
for more information.

The Breast Cancer Risk Assessment Tool may be updated periodically as new data or
research becomes available.

Risk Tool

(Click a guestion number for a brief explanation, or read all explanations.)

1. Doesthe woman have a medical history of any breast cancer
or of ductal carcinoma in situ (DCIS) or lobular carcinoma in
situ (LCIS) or has she received previous radiation therapy to
the chest for freatment of Hodgkin lymphoma®

2. Doesthe woman have a mutation in either the BRCAY or
BRCAZ gene, or a diagnosis of a genetic syndrome that may
be associated with elevated risk of breast cancer?

3. Whatis the woman's age?
Thiz tool only calculates risk for women 35 years of age or
older.

4. Whatwas the woman's age at the time of her first menstrual
period?

5. Whatwas the woman's age at the time of her first live birth of
a child?

6. How many of the woman's first-degree relatives - mother,
sisters, daughters - have had breast cancer?

7. Hasthe woman ever had a breast biopsy?
7a. How many breast biopsies (positive or negative) has the

woman had?
7b.Has the woman had at least one breast biopsy with
atypical hyperplasia?

B Whatis the woman's race/ethnicity? | Select v |

Ba. What is the sub racefethnicity? | Select v |
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Why focus on prediction models?

Cumulative growth in published CPM articles over time
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What is a good model?

Ability to distinguish
between low and high
IMPACT risk patients

Accurate predictions

Improve patient
outcomes

Good and consistent
performance across
different settings and .

. making
populations

A
4([?~Y Influence decision



Phases of prediction model evaluation
Series in BMJ 2009 and in Heart 2012, Moons et al.
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Common pitfalls
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Lack of reproducibility

« Poor methodological & reporting standards
« Overfitting to data at hand




...
Lack of transportability
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...
Lack of transportability

* Missed important predictors
* Missed interaction terms & non-linear terms
« Poor measurement or modeling of relevant predictors




...
Lack of transportability

 Differences in patient spectrum
e Differences in standards of care
e Differences in treatment standards




Lack of (independent) validation




Summarized

Most models are not as good as we think

(and more often than not little attempt is made to address this issue)

« Poor quality of prognostic modelling studies
« Poor reproducibility

« Poor transportability

» Lack of external validation

“All models are wrong, but some are useful”

George Box

s



But wait... this is not the end

There are numerous models for same
target population and outcomes

« >150 models alike Framingham, SCORE, Qrisk
« >100 models for brain trauma patients

* > 100 diabetes type 2 models

> 60 models for breast cancer prognosis



Numerous models for same target
population + outcomes

"Comparing risk prediction models should be
routine when deriving a new model for the same
purpose” (Collins 2012)

“Substantial work (s needed to understand how competing
prediction models compare and how they can best be
applied to individualize care.” (Wessler 2015)

“There (s an excess of models predicting incident CVD
(n the general population. The usefulness of most of
the models remains unclear.” (pamen 2016)

. e American
thelomj Heart
Association.
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...
Evidence synthesis

Why?
* Improve estimation of prediction models

 Evaluate sources of variability in predictive performance
 Evaluate need for tailoring

How?

« Synthesis of prognostic factors

« Synthesis of prediction models

» Synthesis of prediction model performance



Evidence synthesis

Combining information on prognostic factors

Concept: Use previously published risk factor associations
to update multivariable coefficients in “own” data set

Debray et al. BMC Medical Research Methodology 2012, 12:121
http//www biomedcentral.com/1471-2288/12/121

BMC
Medical Research Methodology

TECHNICAL ADVANCE Open Access

Incorporating published univariable
associations in diagnostic and prognostic
modeling

Thomas P A Debray'", Hendrik Koffijberg’, Difei Lu?, Yvonne Vergouwe'?,
Ewout W Steyerberg”! and Karel G M Moons'*

STATISTICS IN MEDICINE
Statist. Med. 19. 141-160 (2000)

PROGNOSTIC MODELS BASED ON LITERATURE AND
INDIVIDUAL PATIENT DATA IN LOGISTIC
REGRESSION ANALYSIS

E. W. STEYERBERG'*, M. J. C. EDKEMANS' J. C. VAN HOUWELINGEN? K. L. LEE* AND
J.D. F. HABBEMA'

! Center for Clinical Decision Sciences, Department of Public Health, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam,
The Netherlands
*Department of Medical Statistics, Leiden Unive P.O. Box 9604, 2300 RC Leiden, The Netherlands
‘qurllm'nl of Community and Family Medicine, Duke University Medical Center, P.O. Box 3363, Durham, NC 27710, U.S.A.




Evidence synthesis
Combining previously published prediction models

Concept: Use limited patient-level data at hand to combine
and tailor previously published models

« Debray et al. Statistics in Medicine (2012) 31:23
« Debray et al. Statistics in Medicine (2014) 33:14
* Martin et al. BMC Medical Research Methodology (2017) 17:1



Evidence synthesis
Combining previously published prediction models

Log odds ratio
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Evidence synthesis
Combining previously published prediction models

Diagnosis of Deep Vein Thrombosis
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Evidence synthesis
Summarizing external validation study results

Concept: Systematically review external validation studies
of a certain prediction model and summarize their results
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Ref: Debray TPA, et al. A guide to systematic review and meta-analysis of prediction model
performance. BMJ 2016 (Accepted for publication)
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...
The rise of big data

What is ‘big data’?

« Meta-analysis of individual participant data (IPD) from
multiple studies

« Analyses of databases and registry data containing e-
health records

Data for thousands or even millions of patients from
multiple practices, hospitals, or countries.

Example: QRISK2 was developed using e-health data from the QRESEARCH
database using over 1.5 million patients (with over 95000 new cardiovascular
events) from 355 randomly selected general practices

s



...
Prediction research using big data

Why do we need ‘big data’?

« Development of better prediction models
— Reduced risk of overfitting
— Abillity to address wider spectrum of patients
— Ability to investigate more complex associations

* More extensive testing of model performance

— Ability to externally validate across multiple settings
(also upon model development)

— Abillity to investigate sources of poor or inconsistent model
performance

— Ability to assess usability of prediction models across

different situations %ﬁ%



...
Prediction research using big data

Prediction model development

Need to identify whether aggregation of IPD is justifiable,
and how to adjust for heterogeneity.

* Allow for different baseline risks in each of the IPD
studies or settings

* |Investigate heterogeneity in predictor effects across
studies or settings

* Implement a framework that uses internal-external
cross-validation



in Medicine i )

Explore this journal =

Research Article

A framework for developing, implementing, and
evaluating clinical prediction models in an individual
participant data meta-analysis

Thomas P.A. Debray &, Karel G.M. Moons, |khlaag Ahmed, Hendrik Koffijberg,
Richard David Riley

First published: 11 January 2013  Full publication nistory
DO 10.1002/5im.5732  View/save citation

Cited by: 19 articles refresh  Citing literature

Internal-external cross-validation (IECV)

View issue TOC
Volume 32, lssue 18
15 August 2013
Pages 3158-3180

1 Correspondence to: Thomas P. A. Debray, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Stratenum

6.131, PO Box 85500, 3508GA Utrecht, The Netherlands.
E-mail: T.Debray@umcutrecht.nl



Internal-external cross-validation (IECV)

Pre-defined development strategy
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Internal-external cross-validation (IECV)
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e
Assessing model performance

Meta-analysis of performance estimates across
different IPD sets

« A’good’ prediction model will have
— satisfactory performance on average
— little or no between-study heterogeneity in performance

* Need to summarize estimates of model performance...
— To estimate likely performance in new studies
— To calculate probability of “good” performance
— To evaluate sources of between-study heterogeneity



e
Meta-analysis of performance estimates

Journal of
CrossMark cl i I'Iical
Epidemiology

Journal of Clinical Epidemiology 69 (2016) 40—50

Multivariate meta-analysis of individual participant data helped externally

validate the performance and implementation of a prediction model Meta-analysis of prediction model performance across

multiple studies: which scale helps ensure between-study

a [; c,d . . . . e - -
Kym LE. Snell, Harry Hua’, Thomas P.A. Debray™, Joie Ensor®, normality for the C-statistic and calibration measures?
Maxime P. Look', Karel G.M. Moons®™Y, Richard D. Riley®*
“Public Health, Epidemiology and Biostatistics, School of Health and Population Sciences, Public Health Building, University of Birmingham, Kym IE Snell', Joie Ensor', Thomas PA Debray??, Karel GM Moons?? Richard D
Edgbaston, Bimmingham B15 2TT, UK . 1
*School of Mathematics, Watson Building, Universiry of Birmingh Edgl Binningham B15 2TT, UK RI|E!!||'

©Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Str. 6.131, PO Box 85500, 3508 GA Utrecht, The Netherlands
Durch Cochrane Centre, University Medical Center Utrecht, Sti: 6,131, PO Box 85500, 3508 GA Utrecht, The Netherlands
“Research Institute for Primary Care and Health Sciences, Keele University, Staffordshire STS 5BG, UK
'Depamnem of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, PO Box 2040, 3000 CA Rorterdam, The Netherlands

Accepted 8 May 2015: Published online 16 May 2015

RESEARCH METHODS AND REPORTING

A guide to systematic review and meta-analysis of prediction
model performance

i Thomas P A Debray,2 Johanna A A G Damen,2 Kym | E Snell,? Joie Ensor,? Lotty Hooft,'
Johannes B Reitsma,’-? Richard D Riley,> Karel G M Moons'?
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Meta-analysis of performance estimates

Evaluate model generalizability

b — Summary (average) C statistic from meta-analysis . M M .
=== 95% prediction interval for C statistic estimate D IScrimin at 1onN pe rfo rmance

° \gg?a?igtlivcegsiit%g?:rfgl(lesrr\:\)/irthin predicted range Of QR'SKZ, dCrossS 364
e ( statistic estimate falls outside predicted range . .
! general practice surgeries
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Standard error of logit C statistic

Summary (average) C statistic =0.83 (95% Cl 0.826 t0 0.833)

95% prediction interval for true C statisticin a
new practice =0.76 to 0.88

Ref: Riley RD, et al. External validation of clinical prediction models using big datasets from e-health records
or IPD meta-analysis: opportunities and challenges. BMJ. 2016;353:i3140.
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Meta-analysis of performance estimates

Compare competing modeling strategies

« Choice of predictors

* Dealing with heterogeneity
* Non-linear effects

* Interaction terms

Table 2. Joint predicted probability of “good™ discrimination and calibration performance of the DVT model for each of the three implementation
strategies, derived using the multivariate meta-analysis results for the C statistic and calibration slope shown in Table 1

Joint predicted probability of meeting criteria in new population

Strategy (1): Strategy (3):
Develop using logistic Strategy (2): Develop using logistic regression and
regression and implement Develop using logistic regression implement with intercept taken from

Calibration Minimum C with intercept estimated in and implement with average study a study used in development data with
slope required statistic required external validation study intercept taken from developed model a similar prevalence
0.9-1.1 0.70 0.027 0.037 0.037
0.8-1.2 0.70 0.146 0.158 0.156
0.9-1.1 0.65 0.427 0.413 0.409
0.8-1.2 0.65 |0.728 | 0.712 0.707

Abbreviation: DVT, deep vein thrombosis.



Meta-analysis of performance estimates

Identify & address sources of heterogeneity

« Differences in patient spectrum
 Differences in baseline risk
 Differences in predictor effects

Facilitate tailoring of developed models!

ORIGINAL ARTICLE

A new framework to enhance the interpretation of external validation
studies of clinical prediction models

Thomas P.A. Debray™”, Yvonne Vergouwe”, Hendrik Koffijberg”, Daan Nieboer”,
Ewout W. Steyerberg™', Karel G.M. Moons™'

“Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Str. 6.131, PO Box 85500,
3508GA Utrecht, The Netherlands
bDeparmem of Public Health, Ervasmus Medical Center, Rotterdam, The Netherlands

Accepted 30 June 2014; Published online xxxx



Guidance

@ PLOS I MEDICINE

CrossMark
ik for updaten

GUIDELINES AND GUIDANCE

Individual Participant Data (IPD) Meta-
analyses of Diagnostic and Prognostic
Modeling Studies: Guidance on Their Use

Thomas P. A. Debray’2*, Richard D. Riley®, Maroeska M. Rovers®, Johannes
B. Reitsma'?, Karel G. M. Moons'?, Cochrane IPD Meta-analysis Methods group”

1 Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands, 2 The Dutch Cochrane Centre, Julius Center for Health Sciences and Primary Care, University
Medical Center Utrecht, Utrecht. The Netherlands, 3 Research Institute for Primary Care and Health
Sciences, Keele University, Staffordshire, The United Kingdom, 4 Radboud Institute for Health Sciences,
Radboudume Nijmegen, The Netherlands

1 Membership of the Cochrane IPD Meta-analysis Methods group is listed in the Acknowledgments.

* T.Debray @ umcutrecht.nl
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R package “metamisc”

metamisc: Diagnostic and Prognostic Meta-Analysis

Meta-analysis of diagnostic and prognostic modeling studies. Summarize estimates of diagnostic test accuracy and prediction model performance.
Validate, update and combine published prediction models.

Version: 0.1.6

Depends: E (= 2.10}, stats, graphics

Imports: metafor, mvtnorm, ellipse, lmed

Suggests: funjags, rjags

Published: 2017-09-06

Author: Thomas Debray [aut, cre], Valentyn de Jong [aut]
Maintainer: Thomas Debray <thomas. debray at gmail com>
License: GPL-2

URL: http.//r-forge r-project. org/projects ' metamisc,
NeedsCompilation: no

In views: MetaAnalvsis

CEAN checks: metamise results

Downloads:

Reference manual: metamisc.pdf

Package source: metamisc_0.1.6 tar gz

Windows binaries: r-devel: metamisc 0.1.6.zip, r-release: metamisc_0.1.6. zip, r-oldrel: metamise 0.1.6.zip

05 X El Capitan binaries: r-release: metamisc_0.1.6.1gz
05 X Mavericks binaries: r-oldrel: metamisc_0.1.6.tgz
O1d sources: metamisc archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=metami=c to link to this page.
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Potential of Machine Learning

Machine Learning not widely implemented yet...
» Loss of transparency
« Performance gain often very limited

Journal of
Clinical
Epidemiology

ELSEVIER Joumal of Clinical Epidemiology 65 (2012) 404—412

Development and validation of clinical prediction models:
Marginal differences between logistic regression, penalized maximum
likelihood estimation, and genetic programming

Kristel J.M. Janssen™™, Ivar Siccama®, Y vonne Vergouwe®, Hendrik Koffijberg®, T.P.A. Debray®,
Maarten Keijzer®, Diederick E. Grobbee®, Karel G.M. Moons"

“Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, PO. Box 85500, 3508 AB Utrecht, The Netherlands

"Department of Newrology, Erasmus Medical Center, Rotterdam, The Netherlands
“Pegasystems Benelux, Amsterdam, The Netherlands
Accepted 9 August 2011; Published online 02 January 2012



Potential of Machine Learning

With the rise of big data, the appeal of machine learning is
Increasing.

Key strenghts
« Handling enormous numbers of predictors
« Modeling highly interactive and nonlinear effects



Potential of Machine Learning

Promising areas of application

« Analysis of unstructured data
— Text (e.g. medical records)
— Images (e.g. CT, MR, ..)
« Analysis of high velocity data
— Brain signals (e.g. restoration of motor control)
— Wearable devices
— Social media
« Diagnosis
— Generation of differential diagnoses
— Suggestion of high-value tests

Ref: Obermeyer Z, Emanuel EJ. Predicting the Future - Big Data, Machine Learning, and Clinical Medicine.
N EnglJ Med. 2016 Sep 29;375(13):1216-9.



Reasons to be optimistic?

General Election: Trump ws, Clinton Ll Clinton {0 «2.7
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