

Methods for IPD meta-analysis

A systematic review

Thomas Debray, PhD Assistant Professor, UMC Utrecht, The Netherlands Affiliated Researcher, Dutch Cochrane Centre, The Netherlands

Project description

- Incorporating real-life clinical data into drug development
 - Pre-authorization versus post-authorization
 - (pragmatic) trials, observational studies, registries and electronic healthcare data
 - Translate clinical efficacy into "real world" clinical practice
- Public-private partnership between key stakeholders
 - Academic institutions
 - HTA agencies and reimbursement bodies
 - Industry
 - Patient organizations

Work packages

- WP1: create shared platform for the inclusion of alternative study designs in development strategies
- WP2: understand the gap between efficacy and effectiveness
- WP3: address operational aspects of conducting pragmatic and adaptive clinical trial designs pre-launch
- WP4: promote best practice in evidence synthesis and predictive modelling
- WP5: management role of GetReal

WP4: systematic reviews

Identify methodology and recommendations for

- Individual Participant Data (IPD) meta-analysis
- Network meta-analysis
- Predictive modeling of treatment effect

Intervention research

- Randomized clinical trials (RCT)
 - Dose finding
 - Safety and efficacy testing

Concerns

- Small sample size
- Narrow inclusion criteria
- Differences in populations, doses and modes of treatments
- Limited transportability to real life settings

Meta-analysis

• Potential aims

- Industry: investigate competitors, identify promising subgroups
- HTA: investigate the added value of a novel drug
- Policy makers: rank competing treatments by effectiveness or safety, inform decision making
- Traditional strategy
 - Systematically review published trials
 - Extract reported results
 - Pooling of extracted data

Meta-analysis

- Typically based on aggregate data (AD)
 - Estimates of treatment effect (e.g. Odds Ratio)
 - Estimates of uncertainty (e.g. Standard error)
 - Study-level characteristics (e.g. Blinding level)

Meta-analysis

im

Meta-analysis

- Problematic when trials are heterogeneous
 - Population
 - Outcome
 - Study design
 - Statistical model
- Limited capabilities of AD to
 - Harmonize variable definitions
 - Investigate treatment-covariate interactions
 - Adjust for study-specific biases
 - Include evidence from non-randomized intervention studies (NRIS)

Meta-analysis of Individual Participant Data (IPD)

- Retrieve raw data from relevant studies
 - Information on treatment, outcome, subject-level characteristics, ...
- Advantages
 - Explore heterogeneity in treatment effect
 - Examine effect modification
 - Adjust for confounding
 - Improve data quality & perform standardization
 - Account for differences in censoring and length of follow-up
 - Analyze multiple outcomes
 - Investigate long-term outcomes, rare exposures and interactions

Methods for IPD meta-analysis - a systematic review

Identify (English) articles addressing issues relating to IPD metaanalysis in intervention research

- Statistical models
- Simulation studies
- Empirical comparisons
- Didactic
- Guidelines

Systematic review: results

- 3360 unique records found eligible for screening
- 154 records eligible for full text assessment
- 138 full text records assessed
 - 1 record excluded due to inclusion criteria
 - 16 additional records included from cross-reference check
- 153 studies included in the review
 - Overview of included articles available at www.zotero.org/groups/wp4_-_ipd_meta-analysis

Conceptual issues

Methods for meta-analysis

- Two-stage approach
 - Stage 1: Reduce IPD to AD
 - Stage 2: Pool AD using traditional approaches
- One-stage approach
 - Analyze the IPD from all studies simultaneously

Two-stage approach

Advantages

- Relatively simple to perform
- Does not borrow information *across* studies when estimating effect sizes *within* a particular study
- Disadvantages
 - Poor power: non-linear associations & interactions
 - Problematic in small samples, different follow-up times, recurrent events

One-stage approach

- Advantages
 - Increased power due to borrowing of information across studies
 - Increased flexibility (e.g. interaction terms)
- Disadvantages
 - Requires substantial statistical expertise
 - Requires additional assumptions
 - Tends to yield similar results as two-stage approach when investigating overall treatment efficacy

One-stage or two-stage?

- The one-stage approach is currently considered as a gold standard
 - The one-stage approach offers most flexibility
 - The one-stage approach offers increased efficiency
 - The two-stage approach can be viewed as a special case of the onestage approach where no assumptions are made on the distribution of between-study heterogeneity

One-stage approach: estimating a summary effect

- Generalized Linear Mixed Models
 - y_{ik}: observed outcome for subject k in study i
 - x_{ik}: treatment indicator for subject k in study i

$$g(E(y_{ik})) = \alpha_i + \beta_i x_{ik}$$

- *α_i*: study effect (e.g. Baseline risk) for study *i*
- *β_i*: treatment effect for study *i*

Investigate heterogeneity in treatment effect

- Heterogeneity between study results
 - Differences between studies
 - Differences between clinical subgroups
- Interaction
 - Trial-level interaction: Treatment interaction with factors that only vary between but not within studies
 - Typically investigated with subgroup analysis or meta-regression
 - Prone to ecological fallacy!
 - Subject-level interaction: Treatment interactions with factors that only vary within studies

Investigate heterogeneity in treatment effect

 $g(E(y_{ik})) = \alpha_i + \beta_i x_{ik} + \gamma_i z_{ik} + \theta_i x_{ik} z_{ik}$

- γ_i: effect of covariate *z* before treatment in study *i*
- θ_i: treatment-covariate interaction in study i
 caution: weighted average of trial-level and subject-level interaction
- Model subject-level interaction separately by replacing z_{ik} by:
 - $\overline{z_i}$: mean of z in study $i \rightarrow$ Interaction term θ_i^A quantifies presence of ecological bias
 - $(z_{ik} \overline{z_i}) \rightarrow$ Interaction term θ_i^W quantifies subject-level interaction

Investigate heterogeneity in treatment effect

- Extensions
 - Heterogeneity of interaction
 - Adjust for study-level covariates
 - Interaction between treatment and study-level covariates
 - Interaction between treatment, subject-level and study-level covariates
- Danger for data dredging and overparameterization!
 - Expert opinion
 - Study protocol

Combining IPD and AD

- Advantages
 - Avoid data availability bias or reviewer selection bias
 - Increase statistical power
- Two-stage approaches
 - Reduce available IPD to AD and perform an AD-MA
 - Risk of ecological bias!
- One-stage approaches
 - Reconstruct IPD using 2 by 2 tables (information on covariates lost)
 - Hierarchical Related Regression (shared parameter models)

Network meta-analysis

Network meta-analysis

- Summarize evidence from multiple treatment comparisons
 - Compare treatments for which no head-to-head trials exist
 - Rank treatments by efficacy or safety
- Concerns
 - Assumptions (some are difficult to test)
 - Direct versus indirect evidence
 - Model complexity
- Role of IPD even more crucial
- Systematic review of methods (GetReal)

Cross-design synthesis

Advantages

- Increased sample size
- Increased variability in inclusion criteria, follow-up information, undergone treatments, treatment patterns, the presence of comorbidities and co-medication
 => improved reflection of "*the real world*"

Disadvantages

- Confounding
- Inclusion of NRSI likely to increase heterogeneity
- Limited options to correct for sources of bias

Cross-design synthesis

- It is currently unclear when cross-design synthesis is justified
- The credibility of cross-design estimates may be challenged
- Key issues to consider
 - Evaluating risk of bias
 - Accounting for bias and confounding
 - Transparency

Missing data

Types of missing data

- Missing completely at random (MCAR)
- Missing at random (MAR)
- Missing not at random (MNAR)

• Missing data in an IPD-MA

- **Subject-level**: variabels that have not been measured or outcomes that are missing
- **Study-level**: unavailable study-level covariates
- **Meta-analysis level:** Missing studies (e.g. publication bias)

Missing data

- (Traditional) Multiple Imputation
 - Replace missing values with a series of predictions
 - Impute each data set separately to account for heterogeneity
 - Problematic in the presence of systematically missing variables
- Multilevel Multiple Imputation
 - One-stage imputation model for the whole IPD-MA data set
 - Allows imputation of sporadically and systematically missing variables
 - Increased power

Frequentist estimation techniques

- Maximum Likelihood estimation
 - Unbiased estimates of fixed effects
 - Under-estimation of variance components in small samples
- Estimation of a penalized likelihood function
 - Reduce bias in estimates of variance components
 - Examples: REML, PQL, EQL, PPL, SPL
- Software
 - R (Ime4, nlme, survival, coxme, frailtypack, MASS, ...)
 - SAS (PROC MIXED, PROC NLMIXED, ...)
 - Stata (stmixed, XT, REGOPROB2, ...)

Bayesian estimation techniques

- Augment likelihood function with prior information
 - Different degrees of prior information possible
 - Variance components no longer assumed as fixed parameters
 - Use of exact likelihood functions less problematic
- Software
 - WinBUGS, JAGS, OpenBUGS

Concluding remarks

- Access to IPD offers numerous advantages
- However ...
 - IPD is still prone to several forms of bias
 - IPD is no panacea against poorly designed and conducted primary research
 - Combining IPD from multiple studies requires additional efforts and statistical expertise

