

Meta-analysis of clinical prediction models

Thomas P.A. Debray, PhD

Introduction

"We demand rigidly defined areas of doubt and uncertainty!" Douglas Adams, The Hitchhiker's Guide to the Galaxy

Clinical Prediction Models

- Estimation of absolute risk using multiple predictors
 - Demographic characteristics
 - Clinical history and physical examination
 - Medical imaging, elekrofysiology, pathology
 - Biomarker tests
- Diagnostic prediction models
 - Predict presence of a certain disease or condition
- Prognostic prediction models
 - Predict future occurrence of a certain outcome
- Guide healthcare professionals and individuals

Clinical Prediction Models

- Developed from subject-level data
 - Cross-sectional studies (diagnostic models)
 - Prospective cohort study (prognostic models)
 - (Other designs)
- Statistical data analyses
 - Data cleaning
 - Predictor selection
 - Missing data
- Presentation
 - Equations to calculate outcome risk
 - Score charts

Deep Venous Thrombosis (DVT)

- Blood clot that forms in a vein in the body (lower leg/thigh)
- If blood clot breaks off -> blood stream -> lungs -> blockage
- Pulmonary embolism, preventing oxygenation of blood
- Potentially causing death

- Limited value of signs and symptoms in primary care
- Most patients suspected of DVT referred to secondary care
- Reference standard: ultrasonography (CUS)
- Burden on patients and health care budgets

Need for developing multivariable prediction models

- Predict presence of DVT in suspected patients
 - Patient history and physical examination
 - Biomarker test results: D-dimer test
- Primary care versus secondary care

WELLS Score (DVT) (*)	
Active cancer (treatment ongoing or within previous 6 months, or palliative treatment)	1
Paralysis, paresis, or recent plaster immobilization of the lower extremities	1
 Recently bedridden for 3 days or more, or major surgery within the previous 12 weeks requiring general or regional anesthesia 	1
 Localized tenderness along the distribution of the deep venous system 	1
Entire leg swollen	1
Calf swelling > 3 cm compared to asymptomatic leg (measuring 10 cm below tibial tuberosity)	1
Pitting edema confined to the symptomatic leg	1
Nonvaricose collateral superficial veins	1
Previously documented DVT	1
Alternative diagnosis at least as likely as DVT	-2
≤ 0 : LOW pretest probability 1 or 2 : MODERATE pretest probability ≥ 3 : HIGH pretest probability	
Wells PS, et al. N Engl J Med 2003; Anderson DR, et al. J Thromb Haemost 20	349: 1227-35 03; 1: 645-51

NMA U

(40 In patients with symptoms in both legs, the more symptomatic leg is used

Characteristics	Hamilton	Modified Wolls
	namilton	Wells
Plaster immobilization of lower limb	2	1
Active malignancy (within 6 months or current)	2	1
Strong clinical suspicion of deep venous	2	_
thrombosis by the emergency physicians without other diagnostic possibilities		
Bed rest (>3 days) or recent surgery (within 4	1	1
weeks)		
Male sex	1	_
Calf circumference >3 cm on affected side	1	1
(measured 10 cm below tibial tuberosity)		
Erythema	1	_
Localized tenderness along the distribution of	_	1
the deep venous system		
Entire leg swollen	_	1
Pitting edema confined to the symptomatic leg	_	1
Collateral superficial veins (nonvaricose)	_	1
Previously documented deep vein thrombosis	_	1
Alternative diagnosis at least as likely as deep vein thrombosis	-	-2
Unlikely versus likely cutoff score	2 or less	1 or less

Diagnostic variables	Odds ratio	Regression coefficient*	p-value	Points for the rule
Male gender	1.80 (1.36 – 2.16)	0.59	<0.001	I
Oral contraceptive use	2.12 (1.32 – 3.35)	0.75	0.002	I
Presence of malignancy	1.52 (1.05 – 2.44)	0.42	0.082	I
Recent surgery	1.46 (1.02 – 2.09)	0.38	0.044	I
Absence of leg trauma	1.82 (1.25 – 2.66)	0.60	0.002	I
Vein distension	1.62 (1.19 – 2.20)	0.48	0.002	I
Calf difference \ge 3 cm	3.10 (2.36 - 4.06)	1.13	<0.001	2
D-dimer abnormal	20.3 (8.25 - 49.9)	3.01	<0.001	6
Constant		-5.47		

DVT= deep vein thrombosis; *=natural logarithm of the odds ratio; D-dimer abnormal for VIDAS \geq 500 ng/ml and Tinaquant \geq 400 ng/ml. Probability of DVT as estimated by the final model = 1/(1+exp-(-5.47 + 0.59*male gender + 0.75*OC use + 0.42*presence of malignancy + 0.38*recent surgery + 0.60*absence of leg trauma + 0.48*vein distension + 1.13*calf difference \geq 3cm + 3.01*abnormal D-dimer)).

TABLEAU II

Analyse multivariée : modèle de régression logistique final prédisant la présence d'une thrombose veineuse profonde

Variable	р	odds ratio	coefficient
Immobilisation médicale dans le mois précédent (alitement > 48 h ou paralysie)	0,07	1,9 (1,0–3,7)	0,62
Contraception oestroprogestative	0,02	4,0 (1,2–12,9)	1,38
Antécédent personnel de MVTE	0,02	2,1 (1,1–4,0)	0,74
Cancer évolutif	<0,01	7,3 (2,4–22,1)	1,99
Diminution du ballant du mollet	0,01	2,3 (1,3–4,1)	0,83
Diagnostic alternatif au moins aussi probable	<0,01	0,1 (0,1–0,3)	-2,08

External validation

- Which model should we use?
- What performance can we expect?
- Does the model require improvements/changes?
- Or, should we rather develop a model from scratch?

External validation is needed!

- Identify and evaluate existing models
- Assess performance in a new sample
- Compare predicted probabilities to observed outcomes
- Distinguish between discrimination and calibration

External validation

Validation sample for DVT models

- Prospective management study
- 300 primary care practices in 3 regions of the Netherlands (Amsterdam, Maastricht, and Utrecht)
- Outcome: incidence of symptomatic venous thromboembolism during 3-month follow-up
- 1028 patients with clinically suspected DVT
- 131/1028 patients eventually diagnosed with DVT

Question: Can the previously identified models predict which subjects have DVT?

External validation (Gagne)

External validation

- Discrimination secondary care models
 - 0.66 (Hamilton)
 - 0.76 (Wells)
 - 0.77 (modified Wells)
- Discrimination primary care models
 - 0.81 (Gagne)
 - 0.82 (Oudega)

Remark: Secondary-care models may not adequately rule out DVT in primary-care settings!

External validation

Model updating

Adjust promising models to the validation sample

- Adjust intercept correct for different outcome prevalence
- Adjust intercept and common slope correct for different outcome prevalence and predictor effects that are over-optimistic
- More advanced updating procedures
 - Adjust a particular regression coefficient
 - Re-estimate all regression coefficients
 - Add completely new predictors

Remark: updating procedures reduce insight into model validity as new parameters are being estimated

Model updating (Gagne)

Update of intercept and common slope

Caveats of prediction modeling research

- Most models are never validated
- Model redevelopment versus model updating
- Risk of overfitting
- Prior knowledge not optimally used
- Incompatibility and confusion

The user must typically choose between a cacophony of existing models for which performance may be obsurce

- Meta-analysis (therapeutic research)
 - Synthesize evidence from multiple trials
 - Obtain a summary estimate of treatment effect
 - Facilitate detailed analyses of effect modification
- Meta-analysis (prognostic research)
 - Synthesize evidence on prognostic factors
 - Aggregate literature models into a meta-model that is optimized for validation sample
 - Improve generalizability of meta-model across different patient populations
- How to combine models with similar predictors?
- How to combine models with different predictors?

Statistics in Medicine			
Research Article Aggregating published prediction m a comparison of different approache Thomas P.A. Debray ^{1,*} , Hendrik Koffijberg ¹	nodels with individ	ual participant data:	SEARCH In this issue Advanced > Saved Searches >
1, [†] and EwoutW. Steyerberg ^{2,†} Article first published online: 26 JUN 2012 DOI: 10.1002/sim.5412 Copyright © 2012 John Wiley & Sons, Ltd.	SSUE	Statistics in Medicine Volume 31, Issue 23, pages 2697–2712, 15 October 2012	ARTICLE TOOLS Cet PDF (179K) Save to My Profile E-mail Link to this Article Export Citation for this Article Get Citation Alerts Request Permissions
Additional Information (Show All)	History Funding Info	mation	🛨 Share 📔 🗗 🗖 🖉

Aggregation of prediction models with **similar predictors**

- Identify common predictors
 - restore missing coefficients and standard errors where necessary (imputation)
- Pooling of predictor effects
 - calculate weighted average of regression coefficients
 - account for differences in precision
 - account for heterogeneity across studies
- Meta-model for average or specific study population
 - Relevance of literature versus validation sample
 - Adjust intercept term to local circumstances

Aggregation of prediction models with **similar predictors**

- Univariate meta-analysis
 - pool predictor effects separately
- Multivariate meta-analysis
 - simultaneous pooling of all predictor effects
- Multivariate meta-analysis + Bayesian inference
 - pooled predictor effects from the literature are used as prior information for the predictor effects in the validation sample

Aggregation of prediction models with **similar predictors**

 Diagnosis of DVT: focus on 4 common core predictors (+ intercept term)

Aggregation of prediction models with **similar predictors**

- (Simplified) meta-model
 - fewer predictors
 - adjusted for validation sample (baseline risk)
 - similar performance as best literature model

Implementation difficult when literature models differ much in terms of included predictors

How to Cite | Author Information | Publication History

Statistics in Medicine			
Research Article Meta-analysis and aggregation of m	ultiple published	prediction models	SEARCH In this issue
Thomas P.A. Debray ^{1,*} , Hendrik Koffijberg ¹ , Daan Nieboer ² , Yvonne Vergouwe ² , Ewout W. Steyerberg ² and Karel G.M. Moons ¹	Statistics	Statistics in Medicine	Advanced > Saved Searches >
Article first published online: 14 JAN 2014 DOI: 10.1002/sim.6080 Copyright © 2014 John Wiley & Sons, Ltd.	in Medicine	Early View (Online Version of Record published before inclusion in an issue)	 Get PDF (329K) Save to My Profile E-mail Link to this Article Export Citation for this Article Get Citation Alerts
Additional Information (Show All)			+ Share = • • •

- Model averaging
 - 1. Update literature models
 - 2. Calculate predictions for each subject, for each model
 - 3. Evaluate performance literature models
 - 4. Calculate weights based on model fit and updating complexity (BIC)
 - 5. Obtain (weighted) average predictions
 - 6. Calculate summary model

- DVT case study
 - update intercept and common slope of all models
 - Weights: 0.998 (Oudega), 0.002 (Gagne), 0 (other models)

- Stacked regressions
 - Weight predictions from literature models
 - Discard models with little (added) value
 - Update common intercept and overall slope
 - No distinct steps, one straightforward estimation procedure
 - Borrows less information from validation sample (as compared to model averaging)

- DVT case study
 - Weights: 1.01 (α), 0.537 (Oudega), 0.497 (Gagne),
 0 (other models)

Stacked Regressions

External validation of meta-models

- Primary Care (N=791)
 - Best literature model: AUC = 0.77, slope = 1.13
 - Model Averaging: AUC = 0.77, slope = 1.13
 - Stacked Regressions: AUC = 0.74, slope = 0.82
- Secondary Care (N=1756)
 - Best literature model: AUC = 0.84, slope = 1.29
 - Model Averaging: AUC = 0.86, slope = 1.29
 - Stacked Regressions: AUC = 0.88, slope = 1.33

Meta-model outperforms existing models for primary and secondary care settings!

Simulation studies

- Model re-development only useful when
 - Large (validation) sample available
 - Literature models too heterogeneous with target population (i.e. differences beyond intercept and common slope)
- For small (validation) samples:
 - Model redevelopment techniques (e.g. backward selection or PMLE) outperformed by meta-analysis
 - Model updating techniques outperformed by metaanalysis

Discussion

- Novel paradigm for model development & validation
- Model aggregation versus selective updating
- Better use of prior knowledge, but only if relevant for target population
- Future research
 - Quality appraisal of literature models
 - Alternative weighting schemes
 - Mixed sources of literature evidence
 - Variable selection

