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Background

Randomized trials are commonly used to assess relative treatment effects

Non-randomized data sources may help to

» study effectiveness of therapeutic interventions in less controlled environments

evaluate prognosis of individual patients encountered in routine care

understand variations in treatment and outcomes

examine factors that influence prognosis and quality of life

describe care patterns

monitor safety and harm



Multiple Sclerosis

Multiple sclerosis (MS) is a
that affects approximately 2.3 million people worldwide

* Most patients diagnosed with MS have a
relapsing-remitting form of the disease

e Relapse-remitting MS is characterized by
(relapses) when
symptoms get worse

No known cure

16 disease modifying therapies (DMTs) available
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Quantifying disease severity

Expanded Disability Status Scale (EDSS)
* Semi-continuous scale
e Ranges from O (normal function) to 10 (death) by increments of 0.5 points.
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Source image: https://mamametms.nl/edss/
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Time to Confirmed Disease Progression

e Confirmed disability progression (CDP) is commonly used as one of the efficacy
endpoints in randomized controlled trials (RCTs).

e Calculation of CDP requires standardized Confirmatory window 3 months
follow-up visits with measurement of EDSS Time to CDP: 6 months
(e.g. assessment every 3 months) g ' ‘
4
3,5
 Time from baseline to an EDSS increase of: 3
e >1.5 points if baseline EDSS = 0; 2>
I : a AEDSS =1
e >1.0 point if baseline EDSS < 6.0; o
. . . 1,5
> 0.5 point if baseline EDSS > 6.0; EDSS increase of 1.0 needed
* Increase must be confirmed 3 months later '
0,5
0
Baseline 3 months 6 months 9 months




MS registries

* Record information about the health status of a patient when they visit their doctor — no
planned visit schedule

* May be hospital-based, country-based or multi-national

£ MSBase VA

Neuro-Immunology Registry

U.S. Department of Veterans Affairs

Veterans Health Administration
Multiple Sclerosis Centers of Excellence

oFFser

Observatoire Frangais
de la Sclérose en Plagues

Morth American Registry for Care and Research in Multiple Sclerosis ' '

The Danish Multiple Sclerosis
Registry
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Source images: https://www.rigshospitalet.dk/, https://www.msbase.org/, http://www.narcrms.org/, http://www.ofsep.org/, https://www.va.gov/ms/



https://www.rigshospitalet.dk/english/departments/neuroscience-centre/department-of-neurology/research/the-danish-multiple-sclerosis-registry/about-the-registry/Pages/about-the-danish-multiple-sclerosis-registry.aspx
https://www.msbase.org/
http://www.narcrms.org/
http://www.ofsep.org/
https://www.va.gov/ms/

Challenges in non-randomized data sources

Table 1| Bias domains included in ROBINS-I

Domain
Pre-intervention

Explanation
Risk of bias assessment is mainly distinct from assessments of randomised trials

Bias dueto
confounding

Baseline confounding occurs when one or more prognostic variables (factors that predict the outcome of interest) also predicts the intervention
received at baseline

ROBINS-I can also address time-varying confounding, which occurs when individuals switch between the interventions being compared and when
post-baseline prognostic factors affect the intervention received after baseline

Bias in selection of
participants into the
study

When exclusion of some eligible participants, or the initial follow-up time of some participants, or some outcome events is related to both
intervention and outcome, there will be an association between interventions and outcome even if the effects of the interventions are identical

This form of selection bias is distinct from confounding—A specific example is bias due to the inclusion of prevalent users, rather than new users, of
an intervention

Atintervention

Risk of bias assessment is mainly distinct from assessments of randomised trials

Bias in classification of
interventions

Bias introduced by either differential or non-differential misclassification of intervention status

Non-differential misclassification is unrelated to the outcome and will usually bias the estimated effect of intervention towards the null

Differential misclassification occurs when misclassification of intervention status is related to the outcome or the risk of the outcome, and is likely to
lead to bias

Post-intervention

Risk of bias assessment has substantial overlap with assessments of randomised trials

Bias due to deviations
from intended
interventions

Bias that arises when there are systematic differences between experimental intervention and comparator groups in the care provided, which
represent a deviation from the intended intervention(s)

Assessment of bias in this domain will depend on the type of effect of interest (either the effect of assignment to intervention or the effect of starting
and adhering to intervention).

Bias due to missing
data

Bias that arises when later follow-up is missing for individuals initially included and followed (such as differential loss to follow-up that is affected by
prognostic factors); bias due to exclusion of individuals with missing information about intervention status or other variables such as confounders

Bias in measurement of
outcomes

Bias introduced by either differential or non-differential errors in measurement of outcome data. Such bias can arise when outcome assessors are
aware of intervention status, if different methods are used to assess outcomes in different intervention groups, or if measurement errors are related
to intervention status or effects

Bias in selection of the
reported result

Selective reporting of results in a way that depends on the findings and prevents the estimate from being included in a meta-analysis (or other
synthesis)
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Challenges in non-randomized data sources

Patient visits do not occur according to a predefined schedule (e.g. every 3 months) but are
dictated by patient characteristics or treatment choices

-> Observed sequences of disease scores may not adequately reflect disease progression
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Impact of visit frequency in MS

Patient visits are dictated by patient characteristics
or treatment choices:

* Changes in disease severity (e.g. relapses) may
affect visit frequency

* Different hospitals/clinics/physicians
could encourage different visit schedules

e Different DMTs may require different monitoring
schedules

Informative visit patterns occur when reasons
associated with visit frequency are also
predictors of the outcome.

Table 1 in Kalincik T, et al. (2017). Treatment effectiveness of alemtuzumab compared with natalizumab,

fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet
Neurology.

Alemtuzumab Interferon beta
(n=156) (n=282)

Women 110 (71%) 209 (74%)
Age, years 33(8) 33(9)
Disease duration, years 31(1-9t06) 2-8(1-3t06.5)
Relapses in 12 months before baseline 2(1-3) 2-1(1)
Disability, EDSS step 3-0(2-0t04-0) 3-0(2-0t0 4-0)
Difference between baseline date and 0(-38t013) -15(-51to0 )
the date of baseline EDSS measurement
Intervisit interval, months 9(6to1l2) 3(1to5)
Previous therapies 0(0to1) 0(0to1l)
Most active previous therapy

Interferon beta or glatiramer acetate 45 (29%) 87 (31%)

Teriflunomide 0 0

Dimethyl fumarate 0 0

Fingolimod 0 0

MNatalizumab 2 (1%) 2 (1%)

Mitoxantrone 2 (1%) 6 (2%)

Other 0 0

Mo previous treatment 102 (65%) 183 (65%)
Length of pairwise-censored follow-up 21(1.0t03-9) 2-1(1-0t03-9)

on study therapy, years




Impact of visit frequency in MS

Calculation of CDP is highly problematic

* Irregular visit patterns may lead to outcome assessment bias due to informative
missingness of relevant patient outcomes.

* Irregular visit patterns may lead to participant selection bias due to exclusion of
participants with no follow-up visits



Existing mitigation strategies for
unequal follow-up visit patterns



Nalve methods

General idea: map the irregular visit pattern to an equally spaced visit schedule
appropriate for applying the definition of time to CDP

(LOCF): replaces the missing response by the patient’s
most recent observation.

: replaces the missing patient’s response by their nearest observation, past or
future.
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Pitfalls of LOCF

LOCF is only unbiased when
* The missing data are MCAR; and

* The data used as the basis for the LOCF imputation has exactly the same distribution as
the unknown missing data.

Bias due to LOCF is often assumed to lead to an underestimation of treatment effects.

However, LOCF analyses can introduce a positive or negative bias

Ref: Lachin JM. Fallacies of last observation carried forward analyses. Clin Trials. 2016;13(2).



Pitfalls of rounding

PatientID Treatment Months Rounded months EDSS Progression

1 0 0 1
1 A 4.4 T3 2
1 A 7 ) 2
1 A 10 ? 3
2 B 0 0 1
2 B 2 3 1
2 B 4.6 <) q
2 B ? ? 2.5

0
1

Reconstructed time to CDP: 3 months

Reconstructed time to CDP: 6 months

* Rounding artificially created a 3-month lag between time to CDP of the two patients.

e Conclusion: treatment B slows time to CDP compared to treatment A when the

progressions were recorded only 6 days apart (0.2 month).



Need for more advanced methods

Key issues
* LOCF and rounding intend to replace missing values by a plausible value (imputation)
e LOCF and rounding do not account for uncertainty in imputed values

* Non-random visit patterns will typically lead to bias if imputation does not adjust for the underlying
missing data mechanism

* More accurate imputations do not necessarily lead to less bias in treatment effect estimates

Ref: Perkins NJ, Cole SR, Harel O, Tchetgen Tchetgen EJ, Sun B, Mitchell EM, et al. Principled Approaches to Missing Data in
Epidemiologic Studies. Am J Epidemiol. 2018 01;187(3):568-75.



Imputations from Generalized
Linear Mixed Models



Proposed multi-level modeling

We propose to model the EDSS trajectories of individual patients with linear mixed
models and to generate imputations from the fitted model

Key advantages:

* Do not require observations at fixed intervals, borrow strength across
observations over time

e Account for the repeated measures within patient
e Can account for higher-level clustering (e.g. hospital, country)

e Possible to account for (time-varying) prognostic factors



Proposed multi-level modeling

Model the outcome over time with a linear mixed model with patient- and hospital-specific
random effects.

K L M
Ytij = ajj + Z;Bkjfk(fn'j} + Z Sy fi(teij. Xij) + Z YmZmij + €tij
/ k=T I=1 m=1 \
Outcome (EDSS) \l

Hospital-specific random Multivariate error term
pitai-sp erii ~ N(0.Z;)

effects of time and
treatment (x;;)

patient/, time t,
hospital j

: . Effect of m prognostic
Patient-specific Bij ~ N(#,ﬁ.k-'fﬁ_k) factors

intercept

aij ~ N(pa. 73)

8 ~ N(us.s. 72,

Exponential (2;;) to account for within-patient correlations.



Generating imputed values

Single imputation

The expected value for a missing EDSS score at time ¢;; is

K L M
Yoij = &jj + Z Bijfi (tejj) + Z Ojf(tejjs Xij) + Z YmZmij + €pij

* In the , the expected value of y,,;; is independent of the

residual errors and we may set €,,;; = 0

T
* Inthe , the observed residual errors &;; = (511']'» ...,enijl-]-)

may inform the magnitude of &,;; . An improved prediction for y,;; can thus be obtained
by setting é,,;; = E(ey;i|€ij)

* The predictions y,;; are rounded to the nearest half-integer and truncated between 0
and 9.5.



Generating imputed values

Single imputation

Consider a patient with missing EDSS scores at times sy;j, ..., Smyjij and observed EDSS
scores at times ty;j, ..., Lnyij - The unobserved error terms can then be described by a
multivariate normal distribution with conditional mean

es:;: ] I €t1;: exp(~|sij — tijj|/d)&? ... exp(~Isij; — tn;;1/d)6?
ij ij - A
, _ exp(—|sgj — t1j;1/d)62 ... exp(—|sy; —fn,j;j|/d)02
E : €ij | = CijZ; : with Cij =
es Er T hexp(_|smuf_’r’ - t1fj |/&)62 e exp(_|smfjfj - tr?‘;jfj|/c;)6-2_
L mUU_ | nUU__

However, imputing missing y,,;; by their expected value J,;; is problematic for statistical
inference



Generating imputed values

Multiple imputation

We propose to randomly sample the residual terms from a

distribution:

( éshj \
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\ESm;ju)

~ MVN

| Csmj;ij |

s1ij

€ij

.Cov

_Esm;jf'.h

s1ij

|€ij

multivariate normal

|deally, additional noise is added to imputations to reflect uncertainty in estimated model

parameters.



Simulation Study



Data Generation Mechanism

* 500 patients per hospital, 20 hospitals
* Treatment allocation as a function of age
* Visits are generated every month for a total follow-up of 24 months

EDSS generated as an underlying continuous process from a linear mixed model:
* Model parameter values based on published observational MS studies
* Patient- and hospital-specific random intercepts

* Age as a prognostic factor

e Treatment contrast introduces a moderate treatment effect that accumulates over
time, favoring treatment B.

e AR1 correlation structure between monthly EDSS scores (rho = 0.8)
Irregular visit patterns are introduced by deleting visits informatively

100 simulations per scenario



Data Generation Mechanism

EDSS
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Probability of observing a visit decreases
from 36% at month 1 to 6% at month 24
(~ 4 visits / 24 months)

Treatment A: probability of observing a
visit at 6, 12, 18 and 24 months is 85%,
3% otherwise (™ 5 visits/24 months)
Treatment B: probability of observing a
visit at 9 and 18 months is 67%, 3%
otherwise (™~ 3 visits/24 months)

Probability of observing a visit varies as a
function of age, treatment and
unobserved EDSS score (~ 4 visits/24
months)



Imputation strategies

1. Last observation carried forward

2. Rounding
3. Proposed linear mixed model with 20 multiple imputations

The effect of treatment on time to CDP (with confirmation window of 3 months) is
estimated with a Cox regression stratified by center and adjusted for age and baseline EDSS

score.

Consideration: Impute missing EDSS only between baseline and last visit, or for all visits
between baseline and the maximum follow-up of 24 months?



Root Mean Squared Error of imputed EDSS
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Estimated treatment effect

Median of 100 simulations

0,2 1  Probability of observing a visit decreases
. from 36% at month 1 to 6% at month 24
0 (~ 4 visits / 24 months)

o - 2 Treatment A: probability of observing a
& 0 visit at 6, 12, 18 and 24 months is 85%,
- 3% otherwise (~ 5 visits/24 months)
§ Treatment B: probability of observing a
o 04 visit at 9 and 18 months is 67%, 3%
] otherwise (~ 3 visits/24 months)

-0,6 3 Probability of observing a visit varies as a
function of age, treatment and
unobserved EDSS score (~ 4 visits/24

-0,8
months)

-1

Scenario 1 Scenario 2 Scenario 3

I | OCF == Rounding = LME-CE (no extrapolation) LME-CE (with extrapolation) === Reference



Estimates in the absence of Treatment effect

Median of 100 simulations
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Final thoughts



Key findings

* LOCF is very problematic in almost all scenarios
* Rounding generally performs better than LOCF
* Multilevel modelling yields the best predictions for missing EDSS

e Better imputations do not always lead to better estimates of
treatment effect
* Need to preserve the distribution of the missing values as good as possible

* Improvements may be dependent on the strength of prognostic factor and
autocorrelation, and on the (mis)specification of the imputation model

* Ommitting imputations beyond the last visit could lead to selection bias for
patients with no follow-up visits (i.e. only baseline visit is available)



Next steps

* Evaluate the methods in real-world MS data with irregular visit
patterns

Possible extensions
e Adjust for parameter uncertainty

* Evaluate coverage



Appendix



Data Generation Model

mejj = 2.78 + ajj + B1j + 0.014¢ — 0.007 ¢ x;; + 0.018a;; + €4/
aij ~ N(0.0 = 1.46)

Bi; ~ N(0,c = 0.20)

€jj ~ N([}! ij)

[ 0.52 0.810.52 ... 0.8240.52)
0.81 0.52 0.52 ... 082052

Ti=
\0.8240.52 0.820.5%2 ... 0.5 |

ajj ~N(u=3710=9.73)

my;;: EDSS score at time t for patient
in center j.

For patients on DMT A (x;; =
0), EDSS increases by 0.014
point per month, on average.

For patients on DMT B, EDSS
increases by 0.07 point per
month, on average.

Older patients have higher
baseline EDSS.

xjj ~ Bernoulli(x;;) Confounding: 7;; = logit™' (0.7 — 0.032a;)
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