Dealing with missing data in an Individual Participant Data Meta-Analysis

TPA Debray^{1,2}, S Jolani³, A Schierenberg¹, KGM Moons^{1,2}

¹Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands ²Cochrane Netherlands, University Medical Center Utrecht, The Netherlands ³Department of Methodology and Statistics, Maastricht University, Maastricht, The Netherlands

Background & Objective

- ▶ It is well known that the presence missing data may lead to substantial bias and reduced statistical power
- Multiple imputation is generally recommended to adequately propagate uncertainty arising from missing data
- Lack of guidance for dealing with missing data across multiple data sources, such as individual participant data meta-analyses (IPD-MA)
- Aim: To compare several methods for imputing missing data in an IPD-MA and synthesizing the corresponding results.

Available Methods

Dealing with missing data

Complete case analysis: Remove individuals with missing values.
 Within-study imputation: Impute each study dataset separately

- Stratified imputation: Stack all study datasets and impute them together.
 Imputation is based on generalized linear effects models where the study variable is treated as a dummy factor.
- Hierarchical imputation: Stack all study datasets and impute them together.
 Imputation is based on generalized linear mixed effects models where random effects are assumed for one or more coefficients.

Synthesis of data sources

- One-stage meta-analysis: Each completed version of the IPD-MA dataset is analysed using a single statistical model that accounts for potential between-study heterogeneity.
- Two-stage meta-analysis: A separate model is first fitted in each completed study dataset. Afterwards,
 - Apply meta-analysis for each completed version of the IPD-MA, and combine the meta-analysis results using Rubin's rules (MA-RR).
 - Combine study-specific estimates using Rubin's rules and then meta-analyse the combined estimates across studies (RR-MA).

Method		Imputation	Meta-Analysis	Order of Pooling
Acronym	Symbol	Description	Description	
СО	\triangle	Complete case analysis	One-stage	_
HO^\dagger		Hierarchical imputation	One-stage	_
ΗO [‡]	0	Hierarchical imputation	One-stage	_
SO	\diamond	Stratified imputation	One-stage	_
WO	\bigtriangledown	Within-study imputation	One-stage	_
HT [†] _{marr}	+	Hierarchical imputation	Two-stage	MA-RR
$HT^\dagger_{\mathrm{rrma}}$	×	Hierarchical imputation	Two-stage	RR-MA
WT_{marr}	\square	Within-study imputation	Two-stage	MA-RR
$WT_{\rm rrma}$	\boxtimes	Within-study imputation	Two-stage	RR-MA

Figure : Results for estimates of between-study variability of the regression coefficients in the simulation study.

Case Study

- Data: IPD from 7 cross-sectional studies examining the diagnostic accuracy of the inflammation marker C-reactive protein (CRP) in capillary blood
- Primary outcome: community acquired pneumonia (CAP) in primary care, determined by chest radiography.
- Covariate of interest: multivariable coefficient of CRP, modeled as ln(1 + CRP).
- Adjustment covariates: age, sputum production, dyspnoea, and current temperature

[†] Imputation allows for heteroscedastic within-study error variances is achieved using a fully Bayesian Gibbs sampler

[‡] Imputation assumes homoscedastic within-study error variances and is achieved using large sample approximations.

Simulation study

Generation of IPD-MA with 10 studies of 250 participants each

- Binary outcome
- Two continuous covariates with varying mean, covariance and covariate-outcome association across studies
- Missing values for one or more covariates according to MAR

Analysis: Five imputations were created for each incomplete data set. All meta-analysis models allowed for joint random effects on the intercept term and regression coefficients.

Introduction of missing data: Random missing values in each study dataset for CRP and temperature measurements (subjects with one or more missing values: 12 – 34% per dataset).

One-stage IPD-MA	Ref.	CO	HO^\dagger	ΗO [‡]	SO	WO
β	0.90	0.88	0.93	0.86	0.91	0.89
SE(eta)	0.07	0.06	0.06	0.08	0.05	0.09
$ au_eta$	0.10	0.07	0.06	0.12	0.05	0.16
Two-stage IPD-MA	Ref.	СТ	HT_{marr}^{\dagger}	HT [†] _{rrma}	WT_{marr}	WT _{rrma}
Two-stage IPD-MA β	Ref. 0.89	CT 0.84	HT [†] _{marr} 0.91	HT [†] _{rrma} 0.91	WT _{marr} 0.85	WT _{rrma} 0.87
Two-stage IPD-MA β SE(β)	Ref. 0.89 0.08	CT 0.84 0.07	HT [†] _{marr} 0.91 0.06	HT [†] _{rrma} 0.91 0.06	WT _{marr} 0.85 0.11	WT _{rrma} 0.87 0.07

Table : Multivariable regression coefficient for transformed CRP values.

Ref = Results obtained by analyzing the original data, *before* missing values are introduced.

Conclusions

- Use of complete case analysis or stratified imputation (by extending the imputation model with a dummy variable indicating study membership) is flawed and may lead to substantial bias.
- Hierarchical imputation and within-study imputation perform similarly, although the former tends to yield more accurate results.
- When the amount of studies and participants per study is sufficiently large, within-study imputation followed by two-stage meta-analysis may be preferred to avoid difficult modeling choices and speed up the estimation procedure.

Figure : Results for fixed effects estimates in the simulation study.

Two-stage IPD-MA that are based on imputed datasets should first apply meta-analysis for each completed version of the IPD-MA, and then combine the meta-analysis results using Rubin's rules (MA-RR).

Contact

Please do not hesitate to get in touch with us during the ISCB!

Thomas Debray, PhD Assistant Professor T.Debray@umcutrecht.nl Shahab Jolani, PhD Assistant Professor s.jolani@maastrichtuniversity.nl

This work was supported by Netherlands Organisation for Scientific Research (NWO) (9120.8004, 918.10.615 and 916.11.126)