

Multiple imputation of systematically missing predictors in an individual participant data meta-analysis

Debray TPA, Jolani S, Koffijberg H, van Buuren S, Moons KGM

Prediction models

Aim to predict...

- presence of a certain outcome (diagnosis)
- future occurrence of a certain outcome (**prognosis**)

Are based on...

- Individual characteristics
- Signs and symptoms
- More invasive or costly measures (e.g. imaging)

Are developed from...

- A set with individual participant data (IPD)
- Increasingly: multiple individual participant datasets
 Individual participant data meta-analysis (IPD-MA)

IPD meta-analysis

Between-study heterogeneity

- Differences in outcome prevalence/incidence
- Differences in predictor-outcome associations
- Should be avoided/mitigated in prediction models!!
- Missing data: impute datasets separately
- Problematic when some predictors are not measured in each individual dataset
 - Exclusion of entire studies or missing predictors
 - Use of imputation strategies ignoring heterogeneity

Imputation strategies are needed to account for systematically missing data in an IPD-MA

Imputation of continuous systematically missing predictors

Previously, *Resche-Rigon* et al. developed a multiple imputation approach that¹:

- Is based on MICE
- Imputes systematically missing continuous predictors
- Adopts linear mixed effect model with random intercept term and slopes
- Relies on standard error around estimated betweenstudy covariance parameters

Although promising, this approach is problematic for non-continuous predictors.

Imputation of systematically missing predictors

- Standard errors of between-study covariance parameters are unreliable:
 - Likelihood of non-linear mixed effects models often lack a closed-form expression -> second-order derivatives become unreliable
 - Standard errors tend to be heavily skewed (even if log-transformed)
- Standard errors of between-study covariance parameters are not always reported (e.g. lme4)

Imputation of non-continuous systematically missing predictors

- MICE procedure (assuming MAR)
- Generalized linear mixed effect model with
 - Fixed effects parameters (γ)
 - Between-study covariance parameters (ψ)
 - Dispersion parameter(s) (σ²)
 (only for imputation of continuous predictors)
- Diffuse prior distributions for γ
- Prior distribution of σ^2 with density proportional to σ^{-2}
- Reference prior for ψ^{-1}

The imputation procedure

Let M = number of studies where x is observed

- 1. Use MLE to estimate $\mathbf{\gamma}$, $\mathbf{\psi}$ and $\mathbf{\sigma}^2$ in studies where x is observed
- 2. Draw \mathbf{y}^* from MVN(\mathbf{y} , var(\mathbf{y}))
- 3. Obtain random effects **b** and calculate $\Lambda = \text{sum}(\mathbf{b}^*\mathbf{b}^T)$
- 4. Draw ψ^{*-1} from a Wishart distribution with df=M and scale matrix Λ^{-1}
- 5. For studies where x is missing: draw b^* from MVN(0, ψ^*)
- For binary x: draw x* using logit⁻¹(zγ*+zb*)
- 7. For continuous x: draw σ^{*2} using σ^2 (based on X^2 distribution) draw $x^* = z \gamma^* + z b^* + \epsilon^*$ where $\epsilon^* \sim N(0, \sigma^{*2})$

Empirical example

Diagnosis of deep vein thrombosis (DVT) I patients with a suspected DVT

- IPD meta-analysis of 13 studies (N=10,002)
- 11 predictors measured in all studies
- 4 (binary) predictors systematically missing
 - Results D-dimer test (*ddimmd*)
 - Family history of thrombofilia (coag)
 - Leg trauma presence (*notraum*)
 - Use of oral contraceptives (oachst)
- Estimation of coefficients *Oudega* model (8 predictors + intercept term)

Methods

- Complete case analysis (CCA)
 exclude studies with missing predictor
- Traditional multiple imputation (TMI)
 imputation model ignoring between-study heterogeneity
- Multilevel multiple imputation (MLMI) imputation model accounting for between-study heterogeneity

Empirical example results

Method		CCA	TMI	MLMI
(intercept)	β	-4.96	-5.00	-4.42
	SE(β)	0.24	0.21	0.28
	τ	0.29	0.46	0.77
()				
ddimd	β	2.68	2.69	2.06
	SE(β)	0.18	0.15	0.34
	τ	0.17	0.26	1.07
notraum	β	0.53	0.54	0.40
	SE(β)	0.12	0.11	0.13
	τ	0.00	0.03	0.18

CCA = complete case analysis

TMI = traditional multiple imputation

MLMI = multilevel multiple imputation

Empirical example results

- Results CCA
 - Low degree of between-study heterogeneity
 - Solely based on Dutch studies
 - Poor transportability: MCAR not plausible (remaining studies are from different countries)
- Results TMI
 - Lowest standard errors
 - Medium levels of between-study heterogeneity
- Results MLMI
 - Largest standard errors
 - Largest degree of between-study heterogeneity

Simulation study

- Based on DVT case study, but using 2 predictors that were measured in all studies
- Introduction of systematically missing predictors according to MCAR

Results (not shown)

- Fixed effect estimates similar for all methods
 - Problematic coverage for TMI and CCA
- Substantial differences for between-study heterogeneity
 - Downward bias for CCA and TMI
 - MLMI sometimes yield extreme estimates when few studies were available

Discussion

CCA

- Underestimates actual degree of heterogeneity
- Problematic when MCAR not justified
- Problematic when multiple predictors are missing, and almost all studies need to be excluded

TMI

Underestimates actual degree of heterogeneity

MLMI

- Optimal coverage (predictor effects)
- Lowest bias (between-study heterogeneity)
- Possible issues: convergence & model complexity

Discussion

CCA and TMI problematic during

- model development
 - Cannot properly identify homogeneous predictors
 - Detrimental selection of important predictors
- Model validation
 - Mask between-study heterogeneity, and therefore...
 - show overoptimistic model performance

MLMI recommended to avoid bias in heterogeneity parameters and improve insight into potential model generalizability

