# Meta-analysis and aggregation of multiple published prediction models

#### Thomas Debray

Koffijberg H, Vergouwe Y, Nieboer D, Steyerberg EW, Moons KGM

Supported by Netherlands Organisation for Scientific Research (TOP 9120.8004, 918.10.615 and 916.11.126)



## Clinical Prediction Modeling

## Model development

- Diagnostic & prognostic outcomes
- Small datasets & overoptimism
- Inappropriate modeling strategies
- Lack of external validation
  - → model redevelopment



#### Evidence aggregation

- Model updating
- IPD meta-analysis
- Combine prediction models





## Evidence aggregation: challenges

- Heterogeneity (populations, study designs, model specification, . . . )
- Target population (difficult to define without participant data)
- Fully parametric models (enhances interpretation & facilitates future implementation)



Bear, as I can, I must, knowing the might of strong Necessity is unconquerable. But touching my fate silence and speech alike are unsupportable.

-Aeschylus, Prometheus Bound

## Case study

## Diagnosis of **Deep Vein Thrombosis** (DVT)

- Previously published prediction models
  - ▶ Wells, Modified Wells (secondary care; rule)
  - ► Hamilton (secondary care; rule)
  - Gagne, (primary care)
  - Oudega (primary care)
- Validation dataset (N = 1028, primary care)

ARTICLE

#### The Wells Rule Does Not Adequately Rule Out Deep Venous Thrombosis in Primary Care Patients

Ruud Oudega, MD; Arno W. Hoes, MD, PhD; and Karel G.M. Moons, PhD

Background: Using data from secondary care outpatients, Wells and colleagues developed a diagnostic rule to estimate the prob-

testing. Repeated leg ultrasonography was the reference standard to determine the true presence or absence of DVT.



## Classical Paradigm

- Literature search Wells, Modified Wells, Hamilton, Gagne, Oudega
- 2 Critical appraisal discard secondary care models?
- 3 External validation identify best models (Oudega & Gagne)
- 4 Model updating intercept update, logistic calibration, model revision
- 5 Recommendations use (updated) Oudega model?

No accumulation of other potentially useful models!

# Model Averaging (MA)

- Update literature models
- 2 Derive probabilistic weights for literature models to average their predictions

$$w_m = \exp(-0.5 \text{ BIC}_m) / \sum_{l=1}^{M} \exp(-0.5 \text{ BIC}_l)$$

3 Estimate summary model  $\operatorname{logit}(\overline{p}_i) = \beta_0 + \sum_{k=1}^K \beta_k x_{ik} + \epsilon_i$ 

Case study: 
$$w_1 = 0.998$$
 (Oudega),  $w_2 = 0.002$  (Gagne) AUC meta-model = **0.82**

Allows implementation of variable selection algorithms Explicit summary model

# Stacked Regressions (SR)

- Simultaneously updates, discovers and estimates the best combination of literature models
- Minimize  $-\left[\sum_{i=1}^{N} y_i \ln(1 + \exp(-\alpha_0 \sum_{m=1}^{M} \alpha_m \text{LP}_{im})) (1 y_i) \ln(1 + \exp(\alpha_0 + \sum_{m=1}^{M} \alpha_m \text{LP}_{im}))\right]$
- Non-negative constraints on the regression slopes  $\alpha_{\it m}$
- Inspect collinearity! (Variance inflation factor)

Case study: 
$$\alpha_1=0.537$$
 (Oudega),  $\alpha_2=0.497$  (Gagne) and  $\alpha_0=1.01$ . AUC meta-model: **0.85**

Explicit summary model



## Results case study



Meta-model includes 10 predictors (out of 14 possible predictors) Secondary care models excluded for MA and SR!

# Closing remarks

## **Extension of Model Validation and Updating**

- Validity meta-model
- Predictor codings & nonlinearity terms
- Time-to-event data

#### Advantages

- Parsimonious optimization
- Customizability
- Model weighting (rather than selection)
- Identification of important predictors