

A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes

Thomas Debray, PhD

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands

Cochrane Netherlands, Utrecht, The Netherlands

thomasdebray.be

I have no actual or potential conflict of interest in relation to this presentation.

Introduction

- Abundance of published prediction models to estimate absolute risk in individual patients
 - Cardiovascular disease (> 350 models) Image: Cardiovascular disease
 - Traumatic brain injury (> 100 models) Image: 100 models
 - Breast cancer (> 50 models)
- External validation studies are increasingly common
 - Apply published model(s) in new patients
 - Compare predicted and observed outcomes
 - Quantify discrimination and calibration performance
 - TRIPOD guidelines for conduct and reporting

Introduction

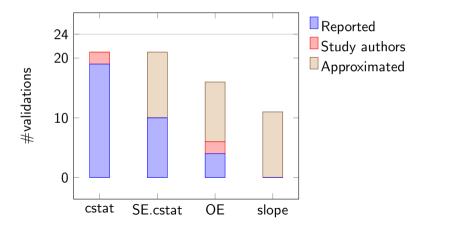
- Estimates of prediction model performance are likely to vary
 - Sampling error
 - Differences in predictor effects
 - Differences in patient spectrum
- · Interpretation of validation study results often difficult
 - Reproducibility of model predictions
 - Transportability across different settings and populations
- Synthesis of validation studies is needed
 - > To assess the model's likely performance in new settings or populations
 - To better understand under what circumstances developed models perform adequately or require further adjustments

Formal guidance for systematic review and meta-analysis

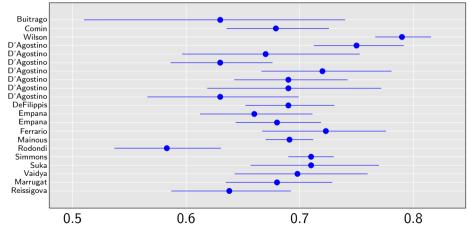
- Debray TPA, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ 2017.
- Debray TPA, et al. A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes. Stat Methods Med Res 2018. ©
- Implementation in R package metamisc

Motivating example

Framingham Risk Score 📀

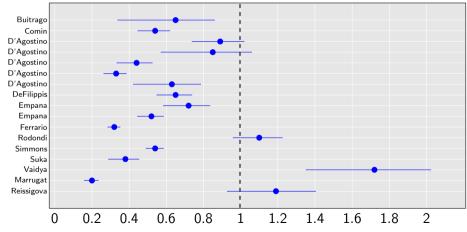

- Model type: Cox regression
- Outcome: Fatal or non-fatal coronary heart disease (CHD)
- Timing: Initial CHD within 10 years
- Evidence: 24 validations in male populations

Summarize estimates of model performance


- Concordance statistic (cstat)
- Ratio of observed versus expected events (OE)
- Calibration slope (slope)

Data extraction

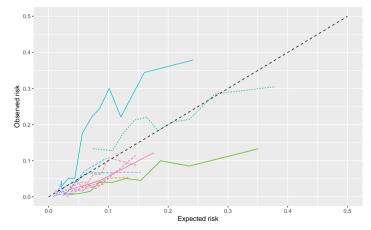
Key problem: Poor and inconsistent reporting of prediction model performance


Data extraction

Concordance statistic with 95% confidence interval

Edinburgh, Sept 16, 2018

Data extraction



Ratio of observed vs. expected events with 95% CI

Edinburgh, Sept 16, 2018

A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes

Data extraction

Risk estimates were reported for 5 (dashed lines), 7.5 (dotted lines) and 10 years follow-up (full lines).

Meta-analysis of the c-statistic

• Proposed random effects model

$$\operatorname{logit}(c_i) \sim \mathcal{N}\left(\mu_{\operatorname{discr}}, \operatorname{Var}\left(\operatorname{logit}(c_i)\right) + \tau_{\operatorname{discr}}^2\right)$$

· Weakly informative priors based on empirical data from 26 meta-analyses

Estimation	Κ	Summary	95% CI	95% PI
REML	21	0.69	0.66 - 0.71	0.59 - 0.77
Bayesian (Unif)	24	0.69	0.66 - 0.71	0.59 – 0.78
Bayesian (Student-t)	24	0.69	0.66 - 0.71	0.59 - 0.78

For 3 studies, we did not have information on c_i but could nevertheless approximate $SE(c_i)$.

Meta-analysis of the total O:E ratio

• 3 possible random effects models

$$\begin{array}{ll} \text{Option 1} & \ln(\text{O:E})_i \sim \mathcal{N} \left(\mu_{\text{cal.OE}}, \text{Var} \left(\ln(\text{O:E})_i \right) + \tau_{\text{cal.OE}}^2 \right) \\ \text{Option 2} & O_i \sim \text{Binom} \left(N_i, p_{\text{O},i} \right) \\ & E_i \sim \text{Binom} \left(N_i, p_{\text{E},i} \right) \\ & \ln \left(p_{\text{O},i} / p_{\text{E},i} \right) \sim \mathcal{N} \left(\mu_{\text{cal.OE}}, \tau_{\text{cal.OE}}^2 \right) \\ \text{Option 3} & O_i \sim \text{Poisson} \left(E_i \exp(\eta_i) \right) \\ & \eta_i \sim \mathcal{N} \left(\mu_{\text{cal.OE}}, \tau_{\text{cal.OE}}^2 \right) \end{array}$$

• Weakly informative priors based on empirical data from 16 meta-analyses

Meta-analysis of the total O:E ratio

Estimation	Κ	Summary	95% CI	95% PI	
REML ¹	6	0.56	0.28 - 1.16	0.09 - 3.62	
$Bayesian^1$ (Unif)	6	0.61	0.19 - 1.08	0.00 - 2.84	
$Bayesian^1$ (Student-t)	6	0.61	0.20 - 1.07	0.00 - 2.63	
ML ³	6	0.56	0.25 - 1.26	0.03 - 11.29	*
Bayesian ³ (Unif)	7	0.60	0.19 - 1.09	0.00 - 2.91	
Bayesian ³ (Student-t)	7	0.60	0.18 - 1.05	0.00 - 2.67	

Meta-analysis of the calibration slope

• Proposed random effects model

$$egin{split} O_{ij} \sim ext{Binom}(N_{ij}, p_{ ext{O}, ij}) \ \log (p_{ ext{O}, ij}) &= lpha_i + eta_i \log (P_{ ext{E}, ij}) \ eta_i &\sim \mathcal{N}(\mu_{ ext{cal.slope}}, au_{ ext{cal.slope}}^2) \end{split}$$

Estimation	K	Summary	95% CI	95% PI
ML	3	1.03	0.90 - 1.16	0.20 - 1.87
$Bayesian^\dagger$	3	1.05	0.47 - 1.64	-0.01 - 2.22
Bayesian [‡]	3	1.05	0.51 - 1.65	-0.06 - 2.17

Final remarks

Meta-analysis of prediction model studies is

- Necessary (inferring on generalizability)
- Feasible (methods, guidance and software available)
- Supported (Cochrane Prognosis Methods Group)

