

Systematic reviews of prognostic studies IV

meta-analytical approaches in systematic reviews of prognostic studies

Thomas Debray, Johanna Damen, Karel Moons for the Cochrane Prognosis Review Methods Group

We have no actual or potential conflict of interest in relation to this presentation

Basic & Advanced Courses * MSC EPIDEMIOLOGY

Systematic Reviews, Diagnostic Research, **Prognostic Research, Clinical Trials, Clinical Epidemiology, Statistics**

Face2Face + Online accessible from all over the world

For example: Introduction to Statistics Systematic Reviews of Diagnostic Studies Clinical Epidemiology Systematic Reviews of Prognostic Studies Systematic Reviews of Intervention Studies Advanced Diagnostic Research **Prognostic Research**

Start date

Face-to-face courses: www.msc-epidemiology.nl

Online courses: www.msc-epidemiology.online

- Risk prediction = foreseeing / foretelling
 ... (probability) of something that is yet unknown
- Turn available information (predictors) into a statement about the probability:
 - ... diagnosis
 - ... prognosis

What is the big difference between diagnostic and prognostic 'prediction'?

Prediction models

			V	X/oi	mer	1									M	en					
	Nor	-sm	oke	r		Sr	mok	er		Age		Nor	rsm	oke	r		Sn	noke	er		
180 7	8		10	12	13	15	17	19	22	, ge	14	16	19	22	26	26	30	35	41	47	
160 5			1	3		10	12	13	16		9	11	13	15	16	18	21	25	29	34	
140 3	3	4	3	6	6	7			11	65	.6			11	13	13	15	17	20	Z 4	
120 2	2	3	3	4	4	5	\$		7		4	5	ø	1	*	9	10	12	14	17	
180 4	4	3	-0	7	8	12	10	11	13			11	13	15	18	18	21	24	28	33	Ê
160 3	3	3	4	з.	8	.4	7		9		6			10	12	12	14	17	20		
140 2	2	2	3	3	3	4	-5	8		60	4	8		1		8	10	12	14		
120 1	1	2	2	Z	2	3	3	4	4		3	3	4	8		6		-8	10	12	
180 2	2	3	3	4	4	8	\$		1			1	8	10	12	12	13	16		22	
160 1	2	2	2	3	3	3	4	4	8		4	5	(6)	. 1	8	8		11	13	16	
140 1	1	1	1	2	2	2	2	3	3	55	3	3	4	5	8	5		8		11	
120 1	1	1	4	1	1	1	2	2	2		2	2	3	3	4	4	4	-5	ă.	-8	
180 1	1	1	2	2	z	2	3	3	4		4	4	-	6	8	7	8	10	12	14	
160 1	1	1	1	1	1	2	2	2	3	50	2	3	3	4	5	8		7		10	
140 0	1	1	1	1	1	1	1	1	Z	50	z	2	2	3	3	3	4	3		2	
120 0	0	1	1	1	1	1	1	1	1		1	1	2	2	2	2	3	3	4	15	J
180 0	0	0	0	0	0	0	0	1	1		1	1	т	2	2	2	2	3	3	4	© 2007 ESC
160 0	0			0	0				0		1	1	1	1	1	1	Z	2	2	3	0.200
140 0				0	۰				0	40	•	1	1	1	1	1	1	1	2	2	č
120 0		0	0	0	0	0	0	0	0		0	0	1	1	1	1	1	1	1	1	2
4	5	6	7	8	4	5	6	7	8		4	5	6	7	8	4	5	6	7	8	
(SC	ф	R	F				C	hole	esterol (I	nmo	ol/L)				1	150 2	100 2 mg/c		300	
-	-			_															56		
	109 5%		4% 6	ver	,	0-ye fatal opul		D in													
	< 1				h	igh	CVI) ris	k												

Systolic blood pressure (mmHg)

Three phases of Prediction Modelling BMJ series 2009 (Altman, Moons, Royston, Vergouwe)

- 1. Developing a prediction model
- 2. Validate (+update) the model in other subjects
- 3. Quantify model's impact on doctor's decision making and patient outcome (cost-effectiveness)

What is big difference between 3 versus 1-2?

Focus on 1-2

Validation of prediction models

Recap: what are validation studies?

- Apply the CPM to new individuals
 - Internal validation
 - Temporal validation
 - Geographical validation
 - Domain validation
- Evaluate the predictive accuracy
 - Overall performance
 - Calibration
 - Discrimination

Performance measures

- Overall performance
 - R^2
- Discrimination
 - C-statistic, area under the ROC curve
 - Discrimination Index
- Calibration
 - Ratio of observed and expected events
 - Calibration-in-the-large
 - Calibration slope

Discrimination

ROC curve

What c-statistic does the ROC curve indicate?

(a) 0.75 - 1.00 (b) 0.60 - 0.75 (c) < 0.60

Discrimination

ROC curve

What c-statistic does
the ROC curve indicate?

(a) 0.75 - 1.00
(b) 0.60 - 0.75 (0.71)
(c) < 0.60

Calibration plot – good model?

Calibration plot – good model?

Ref: Genders et al. Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts. BMJ 2012

Calibration table – good model?

External validation of EuroSCORE

Expected mortality (%) versus observed in-hospital mortality

Score	Ν	Expected	Observed
0-2	201	1.4	0.5
3-5	309	4.0	1.0
6-8	181	6.8	2.2
>= 9	66	10.5	3.0

How well does the EuroSCORE calibrate?

- (a) <u>Good</u>
- (b) <u>Poor</u>, due to over-prediction
- (c) <u>Poor</u>, due to under-prediction

Calibration table – good model?

External validation of EuroSCORE

Expected mortality (%) versus observed in-hospital mortality

Score	Ν	Expected	Observed
0-2	201	1.4	0.5
3-5	309	4.0	1.0
6-8	181	6.8	2.2
>= 9	66	10.5	3.0

How well does the EuroSCORE calibrate?

(a) <u>Good</u>

- (b) **<u>Poor</u>**, due to over-prediction
- (c) <u>Poor</u>, due to under-prediction

Overfitting

Model performance often over-optimistic in the development sample

Ref: Collins et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Meth 2014

Synthesis of validation studies

How informative are validation studies?

A single validation study may provide some information about

- Reproducibility: does the model perform well in new subjects from the same population? (~overfitting)
- **Transportability**: does the model perform well in new settings or populations?

Multiple model validations are usually needed to identify model generalizability across different settings & populations

We need systematic review and metaanalysis of validation studies

Aims

- Summarize model performance
- Investigate generalizability

- Cardiovascular disease major disease burden
- Decide which people need treatment to lower risk
 - Antihypertensive medication
 - Lipid lowering medication
 - Lifestyle interventions
- Prediction models used for risk stratification
- Excess of prediction models in various fields, with numerous validations

Development of CPM (dark blue), Validation of CPM (light blue), development + validation of CPM (white)

Johanna A A G Damen et al. BMJ 2016;353:bmj.i2416

Top 10 validated models	N
Framingham Wilson 1998	80
Framingham Anderson 1991 Am H J	73
SCORE Conroy 2003	63
Framingham D'Agostino 2008	44
Framingham unreferenced	32
Framingham ATP III 2002	31
Framingham Anderson 1991 Circulation	30
QRISK Hippisley-Cox 2007	12
PROCAM Assman 2002	8
Framingham Wolf 1991	8

	Framingham				
Characteristics	Wilson 1998 ⁵ (n=89)†	Anderson 1991 ³ (n=73)	SCORE: Conroy 2003 ⁶ (n=63)		
Location:					
Asia	9 (10)	3 (4)	2 (3)		
Australia	0 (0)	12 (16)	4 (6)		
Europe	34 (38)	52 (71)	47 (75)		
North America	46 (52)	6 (8)	10 (16)		
Age:					
Same age range as development study*	2 (3)	21 (29)	4 (6)		
Young people (<50 years)	3 (3)	6 (8)	4 (6)		
Older people (>60 years)	5 (6)	7 (10)	4 (6)		
Other	79 (89)	39 (53)	51 (81)		
Sex:					
Men	38 (43)	30 (41)	23 (37)		
Women	29 (33)	25 (34)	23 (37)		
Men and women	22 (25)	18 (25)	17 (27)		
Median (range) No of participants	2716 (100-163627), n=87	2423 (262-797 373), n=71	8025 (262-44649), n=63		
Median (range) No of events	146 (8-24659), n=65	128 (1-42408), n=59	224 (16-1722), n=54		
Median (range) C statistic	0.71 (0.57-0.92), n=61	0.75 (0.53-0.99), n=46	0.75 (0.62-0.91), n=28		
Median (range) observed:expected	0.59 (0.37-1.92), n=14	0.68 (0.18-2.60), n=42	0.68 (0.28-1.50), n=26		

Poor and inconsistent reporting of prediction model performance.

- Poor study design
- Inappropriate handling and acknowledgement of missing data
- Calibration often omitted from the publication

Meta-analysis: is it even possible?

Breast Cancer Research and Treatment April 2012, Volume 132, <u>Issue 2</u>, pp 365–377

A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance

 Authors
 Authors and affiliations

 Catherine Meads (\screw), Ikhlaaq Ahmed, Richard D. Riley

 Review

 First Online: 22 October 2011

 DOI: 10.1007/s10549-011-1818-2

 Cite this article as:

 Meads, C., Ahmed, I. & Riley, R.D.

 Breast Cancer Res Treat (2012) 132:

 365. doi:10.1007/s10549-011-1818-2

Meta-analysis: is it even possible?

J Go to old article view

jth journal of thrombosis and haemostasis[™]

Original Article - Cardiovascular Medicine

Predictive performance of the CHA2DS2-VASc rule in atrial fibrillation: a systematic review and meta-analysis

Sander van Doorn 🗠, Thomas P.A. Debray, Femke Kaasenbrood, Arno W. Hoes,

Frans H. Rutten, Karel G.M. Moons, Geert-Jan Geersing

Accepted manuscript online: 4 April 2017 Full publication history

DOI: 10.1111/jth.13690 View/save citation

Cited by (CrossRef): 0 articles 4 Check for updates

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jth.13690

Marrier and the second se

Accepted Articles

Browse Accepted Articles Accepted, unedited articles published online and citable. The final edited and typeset version of record will appear in future.

RESEARCH METHODS AND REPORTING

A guide to systematic review and meta-analysis of prediction model performance

Thomas P A Debray,^{1,2} Johanna A A G Damen,^{1,2} Kym I E Snell,³ Joie Ensor,³ Lotty Hooft,^{1,2} Johannes B Reitsma,^{1,2} Richard D Riley,³ Karel G M Moons^{1,2}

Ref: BMJ 2017; 356 doi: https://doi.org/10.1136/bmj.i6460 (Published 05 January 2017)

Recommended steps

- 1. Formulating the review question
- 2. Formulating the search strategy
- 3. Critical appraisal (CHARMS & PROBAST)
- 4. Quantitive data extraction
- 5. Meta-analysis
- 6. Investigating heterogeneity across studies
- 7. Sensitivity analyses
- 8. Reporting (TRIPOD)

Illustrative example EuroSCORE

Predicting mortality after cardiac surgery

- Cardiac surgery in high-risk population
- Need for risk stratification
- Establish risk profile of cardiac surgical patients using multivariable prediction models
- Establish prediction model performance

Illustrative example EuroSCORE

	Patient related factors		Cardia	c related factors	
Age ¹ (years)	0	0	ΝΥΗΑ	select V	0
Gender	select V	0	CCS class 4 angina ⁸	no 🗸	0
Renal impairment ² See calculator below for creatinine clearance	normal (CC >85ml/min) 🗸	0	LV function	select V	0
Extracardiac arteriopathy ³	no 🗸	0	Recent MI ⁹	no 🗸	0
Poor mobility ⁴	no 🗸	0	Pulmonary hypertension ¹⁰	no 🗸	0
Previous cardiac surgery	no 🗸	0	Operatio	on related factors	
Chronic lung disease ⁵	no 🗸	0	Urgency ¹¹	elective V	0
Active endocarditis ⁶	no 🗸	0	Weight of the intervention ¹²	isolated CABG 🗸	0
Critical preoperative state ⁷	no 🗸	0	Surgery on thoracic aorta	no 🗸	0
Diabetes on insulin	no 🗸	0			
EuroSCORE II V EuroSCORE	0				
Note: This is the 2011 EuroSCORE II	Calculate Clear				

Step 1 Formulating the review question and protocol

Step 1

Formulating the review question and protocol

- Describe rationale, objectives, design, methodology and statistical considerations of the systematic review
- Define the PICOTS

Extensively discussed in the CHARMS workshop!

Step 1 Formulating the review question and protocol

Predictive performance of EuroSCORE

P opulation	Patients undergoing coronary artery bypass grafting
<u>Intervention</u>	The (additive) EuroSCORE model
<u>C</u> omparator	Not applicable
<u>O</u> utcome(s)	All cause mortality
<u>T</u> iming	30 days, predicted using peri-operative conditions
<u>S</u> etting	risk stratification in the assessment of cardiac surgical results

Step 2 Formulating the search strategy

Step 2 Formulating the search strategy

- Use information from the PICOTS
- Combine with existing search filters
- Evaluate citations of the development paper

Tools: electronic databases, conference abstracts, hand searching, online registers

Step 3 Critical appraisal

Step 3 Critical appraisal

Evaluate **bias and applicability** of each validation study

- CHARMS checklist
- PROBAST (2017) see previous workshop

Decide whether studies should be excluded due to low quality and/or applicability with respect to the current review

🕒 Low risk 🧿 Unclear risk 🥃 High risk

Overall judgment for risk of bias of included articles

(21 studies, involving 22 validations)

Step 4 Quantitative data extraction and preparation

Step 4 Quantitative data extraction and preparation

What statistics can we summarize when reviewing external validation studies?

Quantitative data extraction and preparation

What statistics can we summarize?

- Overall performance *R²*, *Brier score*
- Model discrimination *c-statistic*
- Model calibration *O:E ratio, calibration slope*

Quantitative data extraction and preparation

Common problems in data extraction

- Selective reporting
- Inconsistent measures of model performance
- Incomplete assessments (e.g. calibration)
- Missing estimates of precision (e.g. standard error)

Approximations needed to restore missing information on model performance

Quantitative data extraction and preparation

Dealing with incomplete reporting

- C-statistic, O:E ratio and calibration slope can often be derived from reported information
- Several approximations have been proposed to obtain estimates for missing standard errors

RESEARCH METHODS AND REPORTING

A guide to systematic review and meta-analysis of prediction model performance

Thomas P A Debray,^{1,2} Johanna A A G Damen,^{1,2} Kym I E Snell,³ Joie Ensor,³ Lotty Hooft,^{1,2} Johannes B Reitsma,^{1,2} Richard D Riley,³ Karel G M Moons^{1,2}

Step 4 Quantitative data extraction and preparation

Software (R)

metamisc: Diagnostic and Prognostic Meta-Analysis

Meta-analysis of diagnostic and prognostic modeling studies. Summarize estimates of diagnostic test accuracy and prediction model performance. Validate, update and combine published prediction models.

Version:	0.1.5
Depends:	R (\geq 2.10), stats, graphics
Imports:	metafor, mvtnorm, ellipse, lme4
Suggests:	runjags, rjags
Published:	2017-06-22
Author:	Thomas Debray
Maintainer:	Thomas Debray <thomas.debray at="" gmail.com=""></thomas.debray>
License:	<u>GPL-2</u>
URL:	http://r-forge.r-project.org/projects/metamisc/
NeedsCompilation	: no
In views:	MetaAnalysis
CRAN checks:	metamisc results

Quantitative data extraction and preparation

Predictive performance of the EuroSCORE

- C-statistic
 - Summary statistic reported in 20 validations
 - SE approximated for 7 studies
- O:E
 - Relevant information obtained for 21 validations
- Case-mix
 - Distribution of the LP obtained for 15 validation studies

Step 4 Quantitative data extraction and preparation

Predictive performance of the EuroSCORE

Data extraction

Step 4 Quantitative data extraction and preparation

Predictive performance of the EuroSCORE

Quantitative data extraction and preparation

Other information to extract

- Information on case-mix variation
 - Mean & standard deviation of key subject characteristics
 - Mean & standard deviation of the linear predictor
- Information on key study characteristics
 - Location
 - Standards w.r.t. treatments, patient referral, ...

Fixed or random effects?

- Fixed effect meta-analysis
 - The model's *true* predictive accuracy is the same for all validation studies
 - Variation in predictive accuracy only appears due to chance
- Random effects meta-analysis
 - The model's *true* predictive accuracy differs across validation studies
 - Variation in predictive accuracy arises from sampling error and between-study heterogeneity

Fixed or random effects?

- Assumption of homogeneity (fixed effect) often unrealistic because validation studies typically differ in design, execution and case-mix variation
- Ignoring heterogeneity leads to an overly precise summary result
- Summary estimates of predictive accuracy have limited usefulness when there is strong heterogeneity

Other considerations

- Traditional meta-analysis methods assume normality of performance statistics within and across studies
- Normality assumption often challenged because:
 - Some performance measures are bounded: c-statistic (between 0 and 1), total O:E ratio (between 0 and +Inf)
 - Central Limit Theorem not applicable in small samples
- Potentially leading to misleading estimates of uncertainty, and to biased summary estimates

Recommendations

- Allow for random effects
- Rescaling of C-statistics using **logit** transformation
- Rescaling of total O:E ratios using **log** transformation
- No rescaling needed for calibration slope or calibration-in-the-large
- Apply restricted maximum likelihood estimation
- Use Hartung-Knapp-Sidik-Jonkman method for deriving 95% confidence intervals

Recommendations

Article

Statistical Methods in Medical Research 0(0) 1–18

Meta-analysis of prediction model performance across multiple studies: Which scale helps ensure between-study normality for the C-statistic and calibration measures?

Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0962280217705678

© The Author(s) 2017

journals.sagepub.com/home/smm

Kym IE Snell,¹ Joie Ensor,¹ Thomas PA Debray,^{2,3} Karel GM Moons^{2,3} and Richard D Riley¹

Software (R)

metamisc: Diagnostic and Prognostic Meta-Analysis

Meta-analysis of diagnostic and prognostic modeling studies. Summarize estimates of diagnostic test accuracy and prediction model performance. Validate, update and combine published prediction models.

Version:	0.1.5	
Depends:	R (\geq 2.10), stats, graphics	
Imports:	metafor, mvtnorm, ellipse, lme4	
Suggests:	runjags, rjags	
Published:	2017-06-22	
Author:	Thomas Debray	
Maintainer:	Thomas Debray <thomas.debray at="" gmail.com=""></thomas.debray>	
License:	<u>GPL-2</u>	
URL:	http://r-forge.r-project.org/projects/metamisc/	
NeedsCompilation: no		
In views:	MetaAnalysis	
CRAN checks:	metamisc results	

Quantifying heterogeneity

Prediction interval

- Combines the standard error of the summary estimate with the estimate for between-study variability
- Typically based on Student's t distribution
- Provides a range for the potential predictive accuracy in a new validation study
- Ideally calculated from 10 or more validation studies

Quantifying heterogeneity

Probability of "good" performance

- Calculate the likelihood of achieving a certain c-statistic and/or total O:E ratio in a new validation study
- Rough indication of model generalizability

Ref: Snell et al. Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model . JCE 2015.

Results for EuroSCORE

Meta-analysis	Ν	Summary	95% CI	95% PI
C-statistic	18	0.78	0.76 - 0.80	0.73 – 0.83
O:E ratio	19	0.55	0.43 - 0.69	0.20 - 1.53

Probability of "good" discrimination (c > 0.75) = **89%** Probability of "good" calibration ($0.8 \le 0.12$) = **15%**

Step 6 Investigating heterogeneity across studies

Investigating heterogeneity across studies

- Summary estimates of limited value in presence of strong heterogeneity
- Heterogeneity in model performance should be expected
 - C statistic may vary due to differences in "true" regression coefficients and/or due to differences in case-mix
 - Total O:E ratio may vary due to differences in outcome prevalence
- Need for meta-regression / subgroup analysis

Step 6 Investigating heterogeneity across studies

Meta-analysis of EuroSCORE performance

Adjustment for case-mix variation

Step 7 Sensitivity analyses

Evaluate the robustness of drawn conclusions

- Influence of low(er) quality validation studies
- Influence of key modelling assumptions
- ...

Step 7 Sensitivity analyses

Results for EuroSCORE

Meta-analysis	ROB	М	Summary	95% CI	95% PI
C-statistic	All	18	0.78	0.76 - 0.80	0.73 – 0.83
	Low	4	0.80	0.73 – 0.85	0.66 - 0.89
O:E ratio	All	19	0.55	0.43 - 0.69	0.20 - 1.53
	Low	3	0.57	0.10 - 3.33	0.02 - 19.15

Step 7 Sensitivity analyses

Multivariate meta-analysis

- Joint pooling of model discrimination and calibration
- Borrow information across different performance measures within and across studies
- Make joint inferences on different aspects of model performance in new populations

Original Article

Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model

Step 8 Reporting

Relevant guidelines

- PRISMA
- TRIPOD
- GRADE

Case study Performance of the Pooled Cohort Equations

Step 1 Formulating the review question and protocol

Predictive performance of PCE

P opulation	General population
<u>Intervention</u>	PCE
<u>C</u> omparator	Framingham Wilson and ATP III
<u>O</u> utcome(s)	Cardiovascular Disease (CVD)
<u>T</u> iming	10 year
<u>S</u> etting	Primary care and public health

Step 2 Formulating the search strategy

- Articles published before June 2013 selected from a previous review¹
- Update using citation search

Step 3 Critical appraisal

 Risk of bias assessed using a preliminary version of PROBAST

Quantitative data extraction and preparation

Items extracted:

- Study design
- Study population, location
- Study dates
- Case mix
- Predictors
- Outcome definition
- Sample size
- Model performance
 - discrimination (c-statistic)
 - calibration (OE ratio, calibration slope)

Men

Women

PCE CVD			PCE CVD		
Development study*	H	1.00 [0.94 , 1.05]	Development study*	H i I	1.00 [0.93 , 1.07]
Development study*	щ	1.01 [0.89 , 1.14]	Development study*	цін (0.99[0.88,1.12]
Chia2014	H-1	0.34 [0.23 , 0.51]	Chia2014	⊢ 1	0.55[0.37,0.83]
DeFilippis2015	н	0.53 [0.45 , 0.63]	Jung2015	•	0.57 [0.56 , 0.59]
Kavousi2014	щ	0.59 [0.52 , 0.68]	DeFilippis2015	HH	0.60 [0.50 , 0.73]
Jung2015	•	0.63 [0.62 , 0.65]	Cook2014	141	0.61 [0.56 , 0.66]
Muntner2014	H a H	0.72 [0.66 , 0.79]	Andersson2015	⊢ −−	0.67 [0.55 , 0.83]
Goff2014	H a l	0.73 [0.67 , 0.78]	Kavousi2014	н	0.68 [0.58 , 0.80]
Khalili2015	HH	0.76 [0.66 , 0.87]	Goff2014	H a l	0.78[0.71,0.85]
Andersson2015	H++	0.84 [0.75 , 0.94]	Muntner2014	н	0.81[0.73,0.90]
Goff2014	ь.	0.94 [0.80 , 1.12]	Khalili2015	⊢H	0.84 [0.69 , 1.02]
Lee2015	Line 1	1.05 [0.87 , 1.27]	Goff2014	н ці	0.94[0.80,1.11]
			Lee2015	⊢ −−−−−1	1.44 [1.11 , 1.87]
Confidence interval	+	0.70 [0.57 , 0.83]	Confidence interval	•	0.74[0.62,0.86]
Prediction interval		0.70 [0.35 , 1.38]	Prediction interval		0.74[0.41,1.35]
0.0	00 1.00 2.00		0.0	0 1.00 2.00	
	OE ratio			OE ratio	

Men

Women

Step 5 Meta-analysis PCE men

PCE women

Men

H	0.75[0.73,0.76]
⊢∙⊷⊣	0.71[0.68,0.74]
	0.55[0.45,0.64]
⊢∙⊣	0.65 [0.62 , 0.68]
<u>ь</u>	0.67[0.63,0.71]
⊢ ≢⊣	0.68[0.66,0.71]
<u>⊢</u> і	0.71[0.67,0.75]
	0.71[0.66,0.76]
⊢−−− +−−−+	0.71[0.61,0.80]
⊢ •−,	0.72[0.69,0.75]
•	0.73[0.72,0.73]
<u> </u>	0.74[0.70,0.77]
+	0.69 [0.67 , 0.72]
	0.69 [0.59 , 0.78]
0.60 0.80	
C-statistic	

Women

PCE CVD		
Development study*	H # 1	0.81[0.79,0.82]
Development study*	⊢ ++	0.82 [0.80 , 0.84]
Chia2014	· · · · · · · · · · · · · · · · · · ·	0.61[0.49,0.72]
Kavousi2014	⊢ ⊷	0.68 [0.63 , 0.72]
DeFilippis2015	⊢ +−+	0.70 [0.64 , 0.75]
Goff2014	⊢ +−+	0.71[0.66,0.75]
Goff2014	⊢ •-1	0.74 [0.71 , 0.76]
Jung2015	•	0.74 [0.73 , 0.75]
Muntner2014	⊢ ≢⊣	0.74[0.71,0.76]
Lee2015	⊢ −−+−−+	0.76 [0.68 , 0.83]
Andersson2015	<u>⊢</u>	0.77 [0.72 , 0.81]
Khalili2015	<u>н</u> нн	0.82 [0.78 , 0.86]
Confidence interval	-	0.73 [0.70 , 0.76]
Prediction interval		0.73 [0.61 , 0.83]
Γ		
0.40	0.60 0.80	

C-statistic

Men

Women

Wilson CHD Confidence interval Prediction interval	• 	0.68 [0.66 , 0.69] 0.68 [0.61 , 0.73]	Wilson CHD Confidence interval Prediction interval	- 	0.71 [0.66 , 0.76] 0.71 [0.51 , 0.85]
ATPIII CHD Confidence interval Prediction interval		0.64 [0.59 , 0.68] 0.64 [0.48 , 0.77]	ATPIII CHD Confidence interval Prediction interval	٠	0.66 [0.65 , 0.67] 0.66 [0.63 , 0.69]
PCE CVD Confidence interval Prediction interval	• 	0.69 [0.67 , 0.72] 0.69 [0.59 , 0.78]	PCE CVD Confidence interval Prediction interval	* - 	0.73 [0.70 , 0.76] 0.73 [0.61 , 0.83]
0.40	0.60 0.80 C-statistic		0.40	0.60 0.80 C-statistic	

Step 6

Investigating heterogeneity across studies

<u>OE ratio</u>

- Closer to 1 in US compared to other continents
- No association found for other variables (e.g. elgibility criteria, patient characteristics, year)

<u>C-statistic</u>

- Decrease with higher mean age, mean SBP and lower sd age
- No association found for other variables

Step 7 Sensitivity analyses

		PCE men		PCE women
OE ratio	Ν	OE (95%CI)	Ν	OE (95%CI)
All validations	10	0.698 (0.565-0.862)	11	0.742 (0.62-0.888)
Low risk of bias for all domains	2	-	3	-
Weighted by number of events	10	0.698 (0.567-0.86)	11	0.739 (0.619-0.881)
Bivariate analyses	10	0.693 (0.58-0.828)	11	0.739 (0.633-0.863)
Not extrapolated to 10 year	10	0.698 (0.565-0.862)	11	0.742 (0.62-0.888)
C-statistic	Ν	C (95%CI)	Ν	C (95%CI)
All validations	10	0.694 (0.660-0.726)	10	0.733 (0.695-0.768)
Low risk of bias for all domains	2	-	2	-
Weighted by number of events	10	0.696 (0.664-0.726)	10	0.733 (0.694-0.769)
Bivariate analyses	10	0.695 (0.665-0.724)	11	0.734 (0.703-0.762)

Closing remarks

Concluding remarks

- Many similarities to other types of meta-analysis, however,
 - Data extraction more difficult
 - Heterogeneity more common
 - Summary estimates less meaningful
- Recommendations
 - Need for better reporting
 - Need for (minimal set of) standard performance measures
 - Need for IPD
- Tools for data preparation & meta-analysis
 - R package "metamisc"

Conducting systematic reviews of prediction model studies

Reporting of primary study	Transparent reporting of prediction models for prognosis and diagnosis (TRIPOD) – Collins et al. 2015 Ann Intern Med; Moons et al. 2015 Ann Intern Med
Defining review question and developing criteria for including studies	Guidance for defining review question, design of the review and checklist for critical appraisal and data extraction (CHARMS) – <i>Moons et al 2014 PLOS Med</i>
Searching for studies	Search filters for prediction studies – Geersing et al. 2012 PLOS One; Ingui et al. 2002 J Am Med Inform Assoc; Wong et al. 2003 AMIA Annual Symp Proc
Selecting studies and collecting data	Guidance for defining review question, design of the review and checklist for critical appraisal and data extraction (CHARMS) – <i>Moons et al 2014 PLOS Med</i>
Assessing risk of bias and applicability in included studies	Assessment of risk of bias and applicability (PROBAST) – Wolff et al. Publication in 2017, Moons et al. Publication in 2017
Analysing data and undertaking meta-analyses	Meta-Analysis of clinical prediction models Ahmed et al. BMC Res Meth 2014; Debray et al. Stat Med 2012; Debray et al. Stat Med 2014 + Debray et al BMJ 2016
Interpreting results and drawing conclusions	Guidance for interpretation of results Ahmed et al. BMC Res Meth 2014; Debray et al. Stat Med 2012; Debray et al. Stat Med 2014; PROBAST
Reporting of systematic reviews	Transparent reporting of systematic reviews and meta- analysis (PRISMA) Moher et al. PLOS Med 2009
Assessing risk of bias of systematic reviews	Risk of bias in systematic reviews (ROBIS) Whiting et al. J Clin Epid 2015
Cochrane Handbook for Systematic Reviews of Interventions Ver	rsion 5.1.0 - http://handbook.cochrane.ora/

Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 - http://handbook.cochrane.org/

Handy tools / Papers

- Debray TPA et al. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol. 2015.
- Debray TPA et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017.
- Snell KIE et al. Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model. Journal of Clinical Epidemiology. 2015 May;69:40–50.
- Snell KIE et al. Prediction model performance across multiple studies: which scale to use for the c-statistic and calibration measures? Stat Met Meth Res. 2017.

Workshop aftercare

- Questions about workshop?
- Assistant needed with review of studies of prognosis studies?
- Please contact:
 - PMG Coordinator: Alexandra Hendry (Alexandra.Hendry@sswahs.nsw.gov.au)
 - PMG Co-convenor: Karel Moons (K.G.M.Moons@umcutrecht.nl)

Basic & Advanced courses

in Systematic Reviews, Meta Analysis, Clinical Epidemiolgy and Statistics

Face to Face & Online

- Systematic Reviews of Randomised Intervention Studies
- Systematic Reviews of Diagnostic Studies
- Systematic Reviews of Prognostic Studies
- Meta Analysis with Individual Participants Data
- Clinical Trials and Drug Risk Assessment
- Diagnostic Research
- Prognostic Research
- Missing Data

www.msc-epidemiology.eu www.msc-epidemiology.online

