

A framework for meta-analysis of prediction models for binary and time-to-event outcomes

Thomas Debray, PhD

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands

Cochrane Netherlands, Utrecht, The Netherlands

T.Debray@umcutrecht.nl

I have no actual or potential conflict of interest in relation to this presentation

Cape Town, Sept 14, 2017

Risk prediction

- Quantify individual prognosis (e.g. probability of developing an adverse event)
- Use of multiple prognostic/predictive factors
 - Subject characteristics
 - History and physical examination results
 - Imaging results
 - ► (Bio)markers

Identification of high risk individuals

Prediction of individual treatment response

Source: Yeh RW & Kramer DB. Circulation. 2017;135:1097-1100

Cape Town, Sept 14, 2017

What is a good model?

Evaluation of model performance

Validation of prediction models increasingly common!

- 38 validations of Framingham Risk Score (Wilson 1998)
- **31 validations** of Pooled Cohort Equations: estimate risk of cardiovascular disease
- 22 validations of EuroSCORE II: estimate risk of operative mortality in patients undergoing cardiac surgery
- **19 validations** of CHA2DS2-VASc: estimate stroke risk in patients with atrial fibrillation

Need for systematic review & meta-analysis

Validation studies often yield conflicting results due to

- Differences in studied populations
- Differences in methodological standards

Recent guidance (BMJ 2017)

RESEARCH METHODS AND REPORTING

A guide to systematic review and meta-analysis of prediction model performance

Thomas P A Debray,^{1,2} Johanna A A G Damen,^{1,2} Kym I E Snell,³ Joie Ensor,³ Lotty Hooft,^{1,2} Johannes B Reitsma,^{1,2} Richard D Riley,³ Karel G M Moons^{1,2}

Motivating example

Framingham Risk Score (Wilson et al. 1998)

- Model type: Cox regression
- Outcome: Fatal or non-fatal coronary heart disease (CHD)
- Timing: Initial CHD within 10 years
- Evidence: 24 validations in male populations

Summarize estimates of model performance

- Concordance statistic (cstat)
- Ratio of observed versus expected events (DE)
- Calibration slope (slope)

Focus of today on data extraction and meta-analysis

Data extraction

Poor and inconsistent reporting of prediction model performance.

- Poor study design
- Inappropriate handling and acknowledgement of missing data
- Calibration often omitted from the publication

Data extraction

Need to restore missing information

- cstat can be approximated from the distribution of the linear predictor
- SE of cstat can be approximated from the c-statistic, total sample size and total # evens
- OE and its SE can be estimated from reported event counts and/or survival curves
- slope and its SE can be estimated from reported event counts across risk strata (e.g. as presented in calibration tables)

Data extraction: motivating example

For 10 studies, calibration performance was only available for < 10 years follow-up.

Cape Town, Sept 14, 2017

Meta-analysis

- Performance measures such as cstat and OE are very sensitive to patient spectrum, and therefore likely to vary across studies
- Additional uncertainty due to approximations
- Need for weakly informative prior distributions in Bayesian estimation

Meta-analysis of the c-statistic

Statistical model

$$\operatorname{logit}(c_i) \sim \mathcal{N}\left(\mu_{\operatorname{discr}}, \operatorname{Var}\left(\operatorname{logit}(c_i)\right) + \tau_{\operatorname{discr}}^2\right)$$

Estimation	Κ	Summary	95% CI	95% PI
REML	21	0.69	0.66 - 0.71	0.59 - 0.77
Bayesian (Unif)	24	0.69	0.66 - 0.71	0.59 – 0.78
Bayesian (Student-t)	24	0.69	0.66 - 0.71	0.59 – 0.78

For 3 studies, we did not have information on c_i but could nevertheless approximate $SE(c_i)$.

Meta-analysis of the total O:E ratio

We can use different models to account for sampling variability:

Option 1 $\ln(O:E)_i \sim \mathcal{N}\left(\mu_{cal.OE}, \operatorname{Var}\left(\ln(O:E)_i\right) + \tau_{cal.OE}^2\right)$

 $\begin{array}{ll} \text{Option 2} & O_i \sim \text{Binom} \left(N_i, p_{\text{O},i} \right) \\ & E_i \sim \text{Binom} \left(N_i, p_{\text{E},i} \right) \\ & \ln \left(p_{\text{O},i} / p_{\text{E},i} \right) \sim \mathcal{N} \left(\mu_{\text{cal.OE}}, \tau_{\text{cal.OE}}^2 \right) \end{array}$

Option 3
$$O_i \sim \text{Poisson}(E_i \exp(\eta_i))$$

 $\eta_i \sim \mathcal{N}(\mu_{\text{cal.OE}}, \tau_{\text{cal.OE}}^2)$

For all models, the interpretation of $\mu_{cal.OE}$ is the same.

Meta-analysis of the total O:E ratio

Estimation	Κ	Summary	95% CI	95% PI	
REML ¹	6	0.56	0.28 - 1.16	0.09 - 3.62	
Bayesian ¹ (Unif)	6	0.61	0.19 - 1.08	0.00 - 2.84	
Bayesian ¹ (Student-t)	6	0.61	0.20 - 1.07	0.00 - 2.63	
ML ³	6	0.56	0.25 – 1.26	0.03 - 11.29	*
Bayesian ³ (Unif)	7	0.60	0.19 - 1.09	0.00 - 2.91	
Bayesian ³ (Student-t)	7	0.60	0.18 - 1.05	0.00 - 2.67	

When applying extrapolation, we have 10 additional studies for meta-analysis (similar results).

Meta-analysis of the calibration slope

Statistical model

$$\begin{split} O_{ij} &\sim \text{Binom}(N_{ij}, p_{\text{O}, ij}) \\ \text{logit}(p_{\text{O}, ij}) &= \alpha_i + \beta_i \text{ logit}(P_{\text{E}, ij}) \\ \beta_i &\sim \mathcal{N}(\mu_{\text{cal.slope}}, \tau_{\text{cal.slope}}^2) \end{split}$$

Estimation	Κ	Summary	95% CI	95% PI
ML	3	1.03	0.90 - 1.16	0.20 - 1.87
$Bayesian^\dagger$	3	1.05	0.47 – 1.64	-0.01 - 2.22
Bayesian [‡]	3	1.05	0.51 – 1.65	-0.06 - 2.17

When applying extrapolation, we have 8 additional studies for meta-analysis (similar results but smaller intervals).

Cape Town, Sept 14, 2017

R package "metamisc"

• Assist in data preparation & meta-analysis

Illustrative examples

```
metamisc: Diagnostic and Prognostic Meta-Analysis
```

Meta-analysis of diagnostic and prognostic modeling studies. Summarize estimates of diagnostic test accuracy and prediction model performance. Validate, update and combine published prediction models.

Version:	0.1.6
Depends:	$R (\geq 2.10)$, stats, graphics
Imports:	metafor, mytnorm, ellipse, lme4
Suggests:	runjags, rjags
Published:	2017-09-06
Author:	Thomas Debray [aut, cre], Valentijn de Jong [aut]
Maintainer:	Thomas Debray <thomas.debray at="" gmail.com=""></thomas.debray>
License:	GPL-2
URL:	http://r-forge.r-project.org/projects/metamisc/
NeedsCompilation:	no
In views:	MetaAnalysis
CRAN checks:	metamisc results

Downloads:

Reference manual: <u>metamisc.pdf</u> Package source: <u>metamisc.0.1.6.rgz</u> Windows binaries: <u>r-deve: metamisc.0.1.6.rjp, r-release: metamisc.0.1.6.rjp, r-oldrel: metamisc.0.1.6.rjp</u> OS X El Capitan binaries: r-release: <u>metamisc.0.1.6.tgz</u> OS X Mavericks binaries: r-roldrel: <u>metamisc.0.1.6.tgz</u> OI d sources: <u>metamisc.atchive</u>

Linking:

Please use the canonical form https://CRAN.R-project.org/package=metamisc to link to this page.

Cape Town, Sept 14, 2017

Final remarks

- Meta-analysis of model performance often feasible & helpful
- Despite poor reporting, key performance estimates can be retrieved and summarized
- Bayesian estimation methods recommended to fully propagate uncertainty arising from data restoration
- Presence of statistical heterogeneity most likely
- Straightforward extension to meta-regression and multivariate meta-analysis

