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About me

Assistant Professor
University Medical Center Utrecht

Research of statistical methods
• Risk prediction
• Evidence synthesis
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My talk today

• What is prediction?
• Recent advances in Machine Learning
• Recent advances in Penalization
• Recent advances in Evidence Synthesis
• Recent advances in Treatment effect modelling
• Next Steps
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Background



Prediction

Estimate something that is yet unknown

• Presence of a certain disease (diagnosis)
• Future occurrence of a particular event  (prognosis)
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Prediction

Calculate the absolute risk (probability) for distinct individuals

Why?
• Identify high-risk individuals
• Identify absolute treatment effect
• Target decision making to individuals
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Prediction

Calculate the absolute risk (probability) for distinct individuals

How?
Combine information from multiple predictors
• Subject characteristics (e.g. age, gender)

• History and physical examination results (e.g. blood pressure)

• Imaging results
• (Bio)markers (e.g. coronary plaque)
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Prediction

Calculate the absolute risk (probability) for distinct individuals



Prediction

Develop a multivariable statistical model
• Need for patient data from large cohort studies
• Many strategies available (Regression, decision trees, neural networks)



What is a good model?
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What is a good model?

@TPA_Debray

Reproducitbility versus      Transportability

• Performance in 
same population*

• Evaluated with:
– Internal validation (resampling 

methods using random-split)
– External validation (same population)

• Performance in a 
different but related population*

• Evaluated with:
– External validation (different population)
– Resampling methods with non-random 

split

[*] Debray, T., Vergouwe, Y., Koffijberg, H., Nieboer, D., Steyerberg, E. and Moons, K. (2015). 
A new framework to enhance the interpretation of external validation studies of clinical 
prediction models. Journal of Clinical Epidemiology, 68(3), pp.279-289.



Current limitations

@TPA_Debray

Many prediction models perform poorly, do not affect clinical 
practice, or do not improve patient outcomes

• Small & poor quality studies
• Limited variation in studied patients, settings or populations
• Lack of validity and effectiveness assessments

“All models are wrong, but some are useful” – George Box



Improving prediction models

• Machine Learning
• Penalization
• Evidence synthesis
• Treatment effect modelling
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Machine Learning



Machine Learning

@TPA_Debray https://medium.com/analytics-vidhya/fundamental-omachine-learning-ada28afa1bd3



Machine Learning

“There are two cultures in the use of statistical 
modeling to reach conclusions from data. One 
assumes that the data are generated by a given 
stochastic data model. The other uses 
algorithmic models and treats the data 
mechanism as unknown.” – Leo Breiman

@TPA_Debray Statistical Science, Vol. 16, No. 3 (2001), pp. 199-215



Machine Learning

• Strong focus on prediction and classification
• Combination of data-driven algorithms

– Nearest Neighbour
– Recursive Partitioning
– Neural Network
– Support Vector Machine

• Avoidance of modeling assumptions (e.g. additivity, linearity), 
resulting in high flexibility
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Machine Learning in Health Care

Data available for prediction:

• Imaging (e.g. CT scan, MRI)

• Text (e.g. medical records)

• High-throughput data (e.g. wearables)

• High-dimensional laboratory data
• Clinical epidemiological data

@TPA_Debray
Heart. 2018 Jul 1;104(14):1156–64.



Machine Learning in Health Care

Major contributions
• Image recognition
• Analysis of unstructured data
• Problems with high signal:noise ratio
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Machine Learning in Health Care

Major challenges
• Severe overfitting in “small” samples
• Very limited gains in the analysis of large (structured) 

epidemiological datasets
• Not designed for causal inference
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Machine Learning in Health Care
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Machine Learning in Health Care

Machine Learning may not (yet) be suitable for prediction of 
absolute treatment effects in routine care settings

@TPA_Debray



Penalization

Improved prediction of time-to-event outcomes



The need for penalization

Many prediction models are prone to overfitting
• Noise is (partially) interpreted as signal
• Inaccurate predictions for new patients from the target population

– Predicted risk is too high for high-risk patients
– Predicted risk is too low for low-risk patients

• Estimates of out-of-sample performance are over-optimistic
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The need for penalization

How to avoid overfitting?
• Regularize model complexity (e.g. via assumptions)
• Shrink poorly calibrated predictions towards the average risk
• Constrain the magnitude of regression coefficients
• Include a penalty term in the log-likelihood
• Examples: LASSO, Ridge, Elastic Net, etc.
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Overfitting: an example

Observed proportions versus average predicted risk of the event

@TPA_Debray Pavlou M, et al. BMJ. 2015;351:h3868.



Penalization in survival models

What about prediction of time-to-event outcomes?
• Need for parametric survival models
• Need for flexible baseline hazard (BH)
• Need for penalization

Model type Parametric BH Flexible BH Penalization
Cox x ✔ ✔

Weibull ✔ x ✔

Royston-Parmar ✔ ✔ x



Penalization in survival models

Research by drs. Jeroen Hoogland

• Combine the benefits of the Royston Parmar log 
cumulative hazards model and penalized maximum 
likelihood estimation

• Implement an elastic net penalty for the RP model
• Facilitate estimation of non-proportional hazards and 

other interaction terms
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Penalization in survival models

 The log cumulative hazard is modeled as a linear additive combination
 All terms are differentiable w.r.t. (log) time
 Thus, the log-likelihood is available in closed form
 Penalty

 The size of the penalty can be modified per parameter (lambda)
 The mixture between ridge and lasso can be modified per parameter 

(omega)



Penalization in survival models

 Full gradient ascent algorithm (based on lasso Cox PH)

 Step size depends on ratio l’pen / l’’pen
 First derivative of the penalized log-likelihood l’pen

 Second derivative of the penalized log-likelihood l’’pen

 Respects discontinuities in the gradient for parameters subject to an 
absolute value penalty

 When close to the optimum, switches to Newton-Raphson 
 Hyper-parameter tuning using out-of-sample log-likelihood



Simulation study

Data simulated from a Weibull mixture with non-proportional hazards
 20 MVN covariates with mutual correlation 0.25

 12 noise variables
 8 variables with beta = 0.25
 1 (independent) treatment variable with beta = -0.5

 Survival times were right-censored (administrative)
 Event rate ~ 0.75
 500 patients available for model development
 5000 patients for model evaluation



Simulation study results

Error in predicted survival (q .1, .25, .5, .75, .9)
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Simulation study results

Error in predicted individual treatment effect
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Main findings

• The Royston Parmar log cumulative hazards model is very flexible
• Model complexity often needs to be tuned to the data at hand
• Regularization provides a means to do so

Limitations
• algorithm is sensitive to starting values
• As of yet, it starts from ML and PH based initial values
• Therefore, is does not scale well in case of strongly non-PH models with 

>> p
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Overfitting – a problem solved?

Findings from a recent simulation study
• Despite improved performance on average, shrinkage often worked 

poorly in individual datasets, in particular when it was most needed.
• Shrinkage methods do not solve problems associated with small sample 

size or low number of events per variable
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Overfitting – a problem solved?

• Traditional penalization methods help to improve performance when 
the model is applied to new patients from the same target population 
(i.e. reproducibility)

• Penalization does not aim to improve the model’s performance when 
applied across different (but related) settings and populations 
(i.e. transportability)

More advanced methods are needed to quantify and improve the 
generalizability of prediction models
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Evidence synthesis

Improving predictions across different settings and populations



Evidence synthesis in prognosis research

Synthesis of prognosis studies may help

• To identify promising markers
• To identify promising prediction models
• To improve the accuracy of prediction models

@TPA_Debray



Evidence synthesis in prognosis research

• Meta-analysis of published aggregate data (AD)
– Summarize prediction model performance
– Summarize risk factor-outcome associations

• Meta-analysis of individual participant data (IPD)
– Develop & validate prediction models
– Identify prognostic factors
– Identify predictors of treatment effect

• Meta-analysis of IPD and AD
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Meta-analysis of published AD
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Meta-analysis of published AD

Guidance for systematic reviews (research by dr. Damen)

• Defining the review question (PICOTS)

• Defining the search strategy
• Quantitative data extraction 
• Quality appraisal (PROBAST, QUIPS)

• Meta-analysis (metamisc R package)

• Investigating between-study heterogeneity
• Interpretation (GRADE)

• Reporting (guidelines: REMARK, PRISMA, TRIPOD)



R-package: metamisc

@TPA_Debray

Meta-analysis of diagnostic and prognostic modelling studies

https://CRAN.R-project.org/package=metamisc

https://cran.r-project.org/package=metamisc


Meta-analysis of published AD

Recent reviews to summarize prediction model performance

• Breast cancer (Meads et al; Breast Cancer Res. Treat. 2012)

• Perioperative Mortality (Sullivan et al; Am. J. Cardiol. 2016)

• Cardiovascular disease (Damen et al; BMC Med 2017)

• Colorectal cancer (Hu et al; Surg Oncol 2019)

• Chronic lymphocytic leukemia (Molica et al; Leukemia 2020)

• …
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Meta-analysis of IPD

Data increasingly available for thousands or even millions of 
patients from multiple practices, hospitals, or countries.

• Meta-analysis of individual participant data 
(IPD) from multiple studies

• Analyses of databases and registry data 
containing e-health records

@TPA_Debray



Meta-analysis of IPD

Main opportunities

• Increase total sample size
• Increase available case-mix variability
• Ability to standardize analysis methods across IPD sets
• Ability to investigate more complex associations
• Ability to evaluate generalizability of the model across

different settings and populations

@TPA_Debray



External validation using IPD-MA

Validation of QRISK 2 in 364 UK practices

Summary c-statistic = 0.83 (95% CI: 0.825 to 0.834)
95% prediction interval true C-statistic in a new practice = 0.76 to 0.90
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c-statistic
summary (average) c-statistic from meta-analysis

Riley RD, et al. BMJ. 2016;353:i3140. 



Model development using IPD-MA

Internal-external cross-validation

Debray TPA, et al. Stat Med. 2013 Aug 15;32(18):3158–80.
Steyerberg EW, Harrell FE. J Clin Epidemiol. 2015 Apr 18;69:245–7.  



Development of ENCALS

Prognosis of amyotrophic  lateral disease

• 14 cohort studies (specialized ALS centres)
– N = 190 to 1,936 per study (total N = 11,475)
– Median follow-up: 97.5 months
– Composite endpoint 

(Non-invasive ventilation for more than 23h/day, or death)
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Development of ENCALS

Performance Criteria Prob. of “good” 
performance

Joint 
probability

C-statistic > 0.70 100%
98.3%

Calibration slope 0.80 to 1.20 97.1%

Calibration-in-the-large -0.587 to 0.587 85.5%



Developing generalizable prediction models

Stepwise estimation procedure (research by dr. de Jong)

• Fitting of a pre-specified GLM in each study
• Evaluation of performance using IECV
• Loss = f(overall performance in 

hold-out studies, between-study variation)
• Expand (or reduce) model until the overall

loss no longer decreases
• Implementation in “metamisc”



Developing generalizable prediction models

Further extensions

• Methods to adjust for measurement error in IPD-MA
• Methods to disentangle case-mix variation from invalid

predictor effects
• Methods to account for missing participant-level data

in IPD-MA

https://recodid.eu/



Treatment effect modelling

Improving predictions of absolute treatment effect



Background

Individualized absolute treatment effects provide a natural 
starting point to engage in shared decision making

Requirements

• Move to the absolute risk scale
• Adjust for individual patient characteristics
• Consider counterfactual outcomes

@TPA_Debray



Background

Individualized absolute treatment effects provide a natural 
starting point to engage in shared decision making

Two important sources of information (in RCTs):

• Prognostic variables 
predicting outcome risk on reference treatment

• Treatment variables
with potential for effect modification

@TPA_Debray



Background

An example: The SYNTAX score II

“The SYNTAX score II is a clinical tool that combines clinical variables with 
the anatomical SYNTAX score, providing expected 4-year mortality for 
both coronary artery bypass grafting (CABG) and percutaneous coronary 
intervention (PCI) — thus recommending either PCI only, CABG only or 
equipoise in treatment based on long-term mortality.”

DOI: 10.21037/acs.2018.07.02

@TPA_Debray

http://www.annalscts.com/article/view/16517/16758


Background
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Background

@TPA_Debray

Absolute treatment effect is 
19.4% in favor of CABG
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Problem definition

• Randomized Clinical Trials are designed for estimating relative 
treatment effects (e.g. RR, OR)

• Can we use RCT data to predict more individualized absolute 
treatment effects?

@TPA_Debray



Development of treatment effect models

Aim: To compare regression modeling methods on their 
ability to predict individual absolute treatment effect

Investigation of treatment effect models
Based on logistic regression
 Global: a single model for the whole population
 Partitioning: multiple simple models for partitions

of the population
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Global models

 Absence of HTE (risk magnification)

 Presence of HTE (individual treatment-covariate interactions)

 Presence of HTE (interaction between treatment and baseline risk)

#df = p+2

#df = 2p+2

#df = p+3+(1+)
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Partitioning models

 Model-based recursive partitioning
 Start with a simple global model 
 Form partitions      in the space of

such that                                               holds
 Implemented as 

1. Variable-by-variable subgroup selection (single split)
2. Single tree
3. Random forest
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Methods for treatment effect modelling

@TPA_Debray ML = Maximum Likelihood, HGL = Hierarchical Group Lasso 



Empirical example

• RCT with 1:1 allocation ratio (N = 512)
• Population: clinically diagnosed acute otitis media (AOM) in 

children 6 months to 5 years of age
• Intervention: amoxicillin
• Outcome: fever or ear pain was after 3 days’ follow-up
• Baseline data on: treatment received, sex, presence of 

recurrent AOM, fever, bilateral occurrence, ear pain, presence 
of a runny nose, cough, tympanic membrane abnormality, and 
age
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Empirical example

@TPA_Debray

Full modelling Partitioning



Empirical example

@TPA_Debray

Full modelling without penalization

Full modeling
with penalization



Simulation study

• Logistic data generating mechanism
 1:1 allocation ratio
 20% event rate
 6 covariates with a main effect (MVN with rho = 0.3)

• Variable simulation parameters
 sample size 250 or 2500
 presence/absence of average relative treatment effect
 number and size of treatment-covariate interactions 
 absence/presence of (6) noise variables



Simulation study results (1 interaction)

@TPA_Debray

Overfitting

Risk magnification

Full modelling only improves
prediction in large RCTs, but 
penalization is needed



Simulation study results (3 interactions)
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Conclusions

@TPA_Debray

 Small RCTs
• Hard to improve beyond risk-magnification
• However, the price to pay to allow for treatment-covariate 

interactions was small when using both shrinkage and 
selection, especially for the hierarchical group lasso (HGL)

 Large RCTs
• Shrinkage and selection still needed
• Allowing for all interactions was beneficial 



Conclusions

@TPA_Debray

• Baseline risk modifier approach, variable-by-variable 
subgroup, and single MOB were always outperformed

• Random forest MOB performed relatively well given the 
simulation settings



Next steps

• Improving development and validation in single study
• Penalization of absolute treatment benefit
• Machine Learning with assumptions
• Adjusting for competing risk
• Quantifying accuracy of absolute treatment benefit

• Evidence synthesis
• Meta-analysis of individual participant data and published AD
• Meta-analysis of randomized and observational studies
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