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.
My talk today

* What is prediction?

» Recent advances in Machine Learning

* Recent advances in Penalization

« Recent advances in Evidence Synthesis

* Recent advances in Treatment effect modelling
* Next Steps
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Data sharing for

Infectious Diseases

A federated cloud for OMICS and clinical data
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Prediction

Estimate something that is yet unknown

« Presence of a certain disease (diagnosis)
» Future occurrence of a particular event (prognosis)

Yy @TPA_Debray



-
Prediction

Calculate the absolute risk (probability) for distinct individuals

Why?

 l|dentify high-risk individuals

« Identify absolute treatment effect

« Target decision making to individuals

Y @TPA_Debray
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Prediction

Calculate the absolute risk (probability) for distinct individuals

How?

Combine information from multiple predictors

» Subject characteristics (e.g. age, gender)

* History and physical examination results (e.g. blood pressure)
* Imaging results

° (Bio)ma rkers (e.g. coronary plaque)

Y @TPA_Debray



Prediction

Calculate the absolute risk (probability) for distinct individuals
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|0 year risk of CV event:

Organization .
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Enter your information and press Calculate :

Gender: FEMALE
More recommendations >
Age:
40 Input data
Sioker: NG Gender: Female Age: 40
Cholesterol (mg/dl): 200
E?:éiﬂfeb{?ﬁr‘iugh 120 Systolic blood pressure (mmHg):
120
Diabetos: Smoker: No  Diabetes: No
Cholesterol What would happen if....
{mg/dl): 200

SmOke“
Calculate i
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RISK CALCULATOR
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Prediction

Develop a multivariable statistical model
* Need for patient data from large cohort studies
° Many strategies available (Regression, decision trees, neural networks)

Statistics for Biology and Health

Trevor Hastie
Rabert Tibshirani
Jerome Friedman

Ewout W. Steyerberg

PROGNOSIS RESEARCH
IN HEALTHCARE

Concepts, Methods, and Impact :
Data Mining, Inference, and Prediction

A Practical Approach to With Applkationsﬁ Linear Models,
Development, Validation, and Logistic and Ordinal Regression,
Updating 2and Survival Analysis

4 Springer




What is a good model?

Ability to distinguish
between low and high

IMPACT risk patients

Accurate predictions

Improve patient
outcomes

Good and consistent
performance across
different settings and
populations

»
4(/7-‘, Influence decision
making
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B —
What is a good model?

Reproducitbility  versus  Transportability

« Performance in * Performancein a
population* population*
« Evaluated with: « Evaluated with:
— Internal validation (resampling — External validation (different population)
methods using random-split) — Resampling methods with non-random
— External validation (same population) split

Y @TPA_Debray



Current limitations

Many prediction models perform poorly, do not affect clinical
practice, or do not improve patient outcomes

« Small & poor quality studies
« Limited variation in studied patients, settings or populations

» Lack of validity and effectiveness assessments

"All models are wrong, but some are useful” — George Box

y @TPA_Debray
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Improving prediction models

* Machine Learning

« Penalization

« Evidence synthesis

« Treatment effect modelling

Y @TPA_Debray



Machine Learning
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Machine Learning

Y @TPA_Debray

] ®
EoORLGD
1950
Alan Turing created a 1957 1979
test to check if a First neural network for computers o
machine could fool a (the perceptron) was invented by Students of Stanford University, 2002
human being into Frank R blatt, which d California, invented the Stanford . . )
believing it wass talking the thought processes of the human Cart which could navigate and A software library for Machine Learning,
to a machine. brain. avoid obstacles on its own. named Torch is first released.
1952 1967 1997 2016
The first computer learing The Nearest Neighbor IBM's Deep Blue beats the world AlphaGo algorithm developed

program, a game of Algorithm was written. champion at Chess. by Google DeepMind managed
checkers, was written by to win five games out of five in
Arthur Samuel. the Chinese Board Game Go
competition.

https://medium.com/analytics-vidhya/fundamental-omachine-learning-ada28afalbd3



Machine Learning

- “There are two cultures in the use of statistical
| _modeling to reach conclusions from data. One
\ assumes that the data are generated by a given
Y s stochastic data model. The other uses

| algorithmic models and treats the data
mechanism as unknown.” — Leo Breiman

y @TPA_Debray Statistical Science, Vol. 16, No. 3 (2001), pp. 199-215



Machine Learning

« Strong focus on prediction and classification

« Combination of data-driven algorithms
— Nearest Neighbour
— Recursive Partitioning
— Neural Network
— Support Vector Machine

« Avoidance of modeling assumptions (e.g. additivity, linearity),
resulting in high flexibility

Y @TPA_Debray



Machine Learning in Health Care

Input [>OAP>-D>AD(D>A>DAD
predisposition  Genetic Architecture

Data available for prediction: Q

Environment

Family History

t * Pollutants

en

Vil m &- Toxins [ )
e * Chemicals

n’

Exposures

* Imaging (e.g. CT scan, MRI)

R
AR
Lifestyle NN

* Text (e.g. medical records)
. High—throughput data (e.g. wearables) \N
« High-dimensional laboratory data System

. . o . R Artificial Intelligence
Machine L. i Patient Monitori
 Clinical epidemiological data il

Reinforcement Learning

~ajo-
Output =z
Interventional Therapies é
Risk Factor Identification
Disease Monitoring
Patient Monitoring
Therapeutic Stratification

Patient Outcomes

@TPA _Debra
, B Y Heart. 2018 Jul 1;104(14):1156-64.



.
Machine Learning in Health Care

Major contributions

* Image recognition

* Analysis of unstructured data

* Problems with high signal:noise ratio

Y @TPA_Debray



.
Machine Learning in Health Care

Major challenges
« Severe overfitting in “small” samples

* Very limited gains in the analysis of large (structured)
epidemiological datasets

* Not designed for causal inference

Y @TPA_Debray



.
Machine Learning in Health Care

Modern modelling techniques are data hungry: a Logistic regression has similar performance
simulation study for predicting dichotomous to optimised machine learning algorithms
endpoints in a clinical setting: application to the

discrimination between type 1 and type 2
diabetes in young adults

Anita L. Lynam', John M. Dennis', Katharine R. Owen?>, Richard A. Oram', Angus G. Jones',
Beverley M. Shields' and Lauric A. Ferrat'”

Tieerd van der Ploeg™", Peter C Austin® and Ewout W Steyerberg®

Modern modeling techniques had limited external validity in
predicting mortality from traumatic brain injury

ab,e,

Tjeerd van der Ploeg *, Daan Nieboer, Ewout W. Steyerberg”

“Department of Science, Medical Center Alkmaar, Wilhelminalaan 12, Alkmaar 1815 JD, The Netherlands
" Department of Science, Inholiand University, Bergerweg 200, Alkmaar 1817 MN, The Netherlands
“Department of Public Health, Erasmus MC—University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands

Accepted 5 March 2016; Published online 14 March 2016

A systematic review shows no performance benefit of machine learning
over logistic regression for clinical prediction models

Evangelia Christodoulou®, Jie Ma", Gary S. Collins”“, Ewout W. Steyerbergd,
Jan Y. Verbakel™*', Ben Van Calster™"*
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.
Machine Learning in Health Care

Machine Learning may not (yet) be suitable for prediction of
absolute treatment effects in routine care settings

Y @TPA_Debray



Penalization

Improved prediction of time-to-event outcomes
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The need for penalization

Many prediction models are prone to overfitting
* Noise is (partially) interpreted as signal

» Inaccurate predictions for new patients from the target population
— Predicted risk is too high for high-risk patients
— Predicted risk is too low for low-risk patients

« Estimates of out-of-sample performance are over-optimistic
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The need for penalization

How to avoid overfitting?

» Regularize model complexity (e.g. via assumptions)

« Shrink poorly calibrated predictions towards the average risk
« Constrain the magnitude of regression coefficients

* Include a penalty term in the log-likelihood

« Examples: LASSO, Ridge, Elastic Net, etc.

Y @TPA_Debray



-
Overfitting: an example

o
-
193]

B Observed proportion of failures
St
o = .andard
[ Ridge

[ Lasso
0.09 _

0.06

Average predicted risk of
valve failure in risk group

0.03

BT
1(0-2%) 2 (2-4%) 3 (4-8%) 4 (>8%)

Risk group
Observed proportions versus average predicted risk of the event

Y @TPA_Debray Pavlou M, et al. BMJ. 2015;351:h3868.



L
Penalization in survival models

What about prediction of time-to-event outcomes?
» Need for parametric survival models

* Need for flexible baseline hazard (BH)

* Need for penalization

Model type Parametric BH | Flexible BH
Cox X v v

Weibull v X v
Royston-Parmar v v X



Penalization in survival models

Research by drs. Jeroen Hoogland

« Combine the benefits of the Royston Parmar log
cumulative hazards model and penalized maximum
likelihood estimation

* Implement an elastic net penalty for the RP model

 Facilitate estimation of non-proportional hazards and
other interaction terms

Y @TPA_Debray
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Penalization in survival models
» The log cumulative hazard is modeled as a linear additive combination

= All terms are differentiable w.r.t. (log) time
= Thus, the log-likelihood is available in closed form

» Penalty
’ 1
P,(0) = A l0i] + (1 — w;) = Aa07
(6) ;W 13l0i] + (1 — wi) 5 A2ib;
= The size of the penalty can be modified per parameter ( )

= The mixture between ridge and lasso can be modified per parameter

( )



L
Penalization in survival models

Full gradient ascent algorithm (based on lasso Cox PH)

= Step size depends on ratio I,/ I" e
= First derivative of the penalized log-likelihood I',,
= Second derivative of the penalized log-likelihood 1",
= Respects discontinuities in the gradient for parameters subject to an
absolute value penalty
=  When close to the optimum, switches to Newton-Raphson

= Hyper-parameter tuning using out-of-sample log-likelihood



Simulation study

Data simulated from a Weibull mixture with non-proportional hazards

= 20 MVN covariates with mutual correlation 0.25
= 12 noise variables
= 8 variables with beta = 0.25
= 1 (independent) treatment variable with beta = -0.5

= Survival times were right-censored (administrative)
= Eventrate ~ 0.75

= 500 patients available for model development

= 5000 patients for model evaluation



B —
Simulation study results

Error in predicted survival (g .1, .25, .5, .75, .9)

ML Regularized

Absolute error
Absolute error

0.00 005 0.10 015 0.20
]

0.00 005 0.10 015 0.20
|

time time
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B —
Simulation study results

Error in predicted individual treatment effect

ML Regularized
[To] [To]
S | o
S o S o
5 S 5 5 -
e ° e °
= =
2 g 2 g
= 27 < 2
8 8
SHES T T T T T SHES T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
time time
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-
Main findings

» The Royston Parmar log cumulative hazards model is very flexible
« Model complexity often needs to be tuned to the data at hand
* Regularization provides a means to do so

Limitations
 algorithm is sensitive to starting values
» As of yet, it starts from ML and PH based initial values

« Therefore, is does not scale well in case of strongly non-PH models with
> > P

Y @TPA_Debray
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Overfitting — a problem solved?

Findings from a recent simulation study

« Despite improved performance on average, shrinkage often worked
poorly in individual datasets, in particular when it was most needed.

« Shrinkage methods do not solve problems associated with small sample
size or low number of events per variable

Y @TPA_Debray

Article

STATISTICAL METHODS IN MEDICAL RESEARCH

Regression shrinkage methods for clinical
prediction models do not guarantee
improved performance: Simulation study

Statistical Methods in Medical Research
0(0) 1-13

(© The Author(s) 2020

Avrticle reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0962280220921415
journals.sagepub.com/home/smm

®SAGE



Overfitting — a problem solved?

« Traditional penalization methods help to improve performance when
the model is applied to new patients from the same target population
(i.e. reproducibility)

» Penalization does not aim to improve the model’s performance when
applied across different (but related) settings and populations
(i.e. transportability)

More advanced methods are needed to quantify and improve the
generalizability of prediction models

Y @TPA_Debray



Evidence synthesis

Improving predictions across different settings and populations
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B —
Evidence synthesis in prognosis research

Synthesis of prognosis studies may help

« To identify promising markers
« To identify promising prediction models
« To improve the accuracy of prediction models

Y @TPA_Debray



B —
Evidence synthesis in prognosis research

« Meta-analysis of published aggregate data (AD)
— Summarize prediction model performance
— Summarize risk factor-outcome associations

» Meta-analysis of individual participant data (IPD)
— Develop & validate prediction models
— Identify prognostic factors
— ldentify predictors of treatment effect

* Meta-analysis of IPD and AD

Y @TPA_Debray
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Meta-analysis of published AD

Research Methods & Reporting
A guide to systematic review and meta-analysis of prognostic factor studies

BM/ 2019 ;364 doi https//doi.org/10.1136/bmj k4597 (Published 30 January 2019)
Cite this as: BM/ 2019;364:k4597

Research Methods & Reporting
A guide to systematic review and meta-analysis of prediction model performance

BM/ 2017 ;356 doi: hittps://doi.org/10.1136/bmj.i6460 (Published 05 January 2017)
Cite this as: BM/ 201735616460

Yy @TPA_Debray thelomj



Meta-analysis of published AD

Guidance for systematic reviews (research by dr. Damen)

Cochrane
Colloquium Edinburgh
gh,

Defining the review question (picoTs)
Defining the search strategy

Quantitative data extraction

Quality appraisal (PrROBAST, QuIPS)

Meta-a naIysis (metamisc R package)

Investigating between-study heterogeneity
Interpretation (GRADE)

18 | Edinburgh, UK

Reporting (guidelines: REMARK, PRISMA, TRIPOD)



R-package: metamisc

Meta-analysis of diagnostic and prognostic modelling studies

https://CRAN.R-project.org/package=metamisc

y @TPA_Debray


https://cran.r-project.org/package=metamisc

B —
Meta-analysis of published AD

Recent reviews to summarize prediction model performance

 Breast cancer (Meads et al; Breast Cancer Res. Treat. 2012)

* Perioperative Mortality (sullivan et al; Am. J. Cardiol. 2016)

« Cardiovascular disease (Damen et al: BMC Med 2017)

» Colorectal cancer (Hu et at: Surg Oncol 2019)

« Chronic lymphocytic leukemia (Molica et at; Leukemia 2020)

Y @TPA_Debray



.
Meta-analysis of IPD

Data increasingly available for thousands or even millions of
patients from multiple practices, hospitals, or countries.

* Meta-analysis of individual participant data
(IPD) from multiple studies

* Analyses of databases and registry data
containing e-health records

y @TPA_Debray
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Meta-analysis of IPD

Main opportunities

* Increase total sample size

* Increase available case-mix variability

» Ability to standardize analysis methods across IPD sets
 Ability to investigate more complex associations

» Ability to evaluate generalizability of the model across
different settings and populations

y @TPA_Debray



External validation using IPD-MA

Validation of QRISK 2 in 364 UK practices

c-statistic

€A Summary c-statistic = 0.83 (95% CI: 0.825 to 0.834)
) 95% prediction interval true C-statistic in a new practice = 0.76 to 0.90
T T T T T T
0 100 200 300 400 500
number of CVD events

® c-statistic
summary (average) c-statistic from meta-analysis

Riley RD, et al. BMJ. 2016;353:i3140.



Model development using IPD-MA

Internal-external cross-validation

Development sample Validation sample
1,2,3,..,1000 1001,1002.... 2000
Center Center
a h.d
1,2...,250 251,252,..,1000
Internal-external Model External
cross-validation validation

Internally-externally
validated model
Debray TPA, et al. Stat Med. 2013 Aug 15;32(18):3158-80.
Steyerberg EW, Harrell FE. J Clin Epidemiol. 2015 Apr 18;69:245-7.
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Development of ENCALS

Prognosis of amyotrophic lateral disease

* 14 cohort studies (specialized ALS centres)
— N =190 to 1,936 per study (total N = 11,475)
— Median follow-up: 97.5 months

— Composite endpoint
(Non-invasive ventilation for more than 23h/day, or death)

Y @TPA_Debray



Development of ENCALS

Validation cohort ¢ statistic (95% Cl)
Utrecht, Netherlands = 0-79 (077 to 0-81)
Dublin, Ireland —— 0-78 (0-76 to 0-80)
Torino, Italy —— 0-77 (0-75to 0-79)

Sheffield, UK —a— 0-78 (076 t0 0-80)
London, UK —a 0-82 (07910 0.84)
Oxford, UK — 078 (075 to 0-81)
Lewven, Belgium —a— 0-77 (075 to 0-80)
Lisbon, Portugal —_— 0-77 (0-74 to 0-80)
Hannover, Germany —— 0-74 (07110 0-77)

Ulm, Germary —_— 0-83 (07810 0.88)
Jena, Germany —_— 0-80 (0-75to 0-85)
St Gallen, Switzerland —_— 0-80 (074 to 0-86)
Tours, France —— 0-76 (07110 0-81)
Limoges, France —— 0-80 (073 t0 0-86)
Meta-analysis —»>— 0-78 (077 to 0-80)

0.70

o-}r5 0.80 0-55 obu

95% P10-74 to 0-82

THE LANCET ig 0
Neurology @,

Volume 17, Issue 5, May 2018, Pages 423-433

Articles

Prognosis for patients with amyotrophic lateral sclerosis:
development and validation of a personalised prediction model
Henk-Jan Westeneng MD 2, Thomas P A Debray PhD ™ ¢ Anne E Visser MD 2, Ruben P A van Eijk MD 2. James
F K Rooney MSc 9, Andrea Calvo MD =, Sarah Martin BSc f, Prof Christopher J McDermott PhD 9, Alexander G

Thompson BMBCh ™ Susana Pinto PhD', Xenia Kobeleva MD ), Angela Rosenbohm MD ¥, Beatrice Stubendorff
FhD', Helma Sommer ™ Bas M Middelkoop 2, Annelot M Dekker MD 3, Joke J F A van Vugt PhD 2 Wouter van

Rheenen MD ? ___ Prof Leonard H van den Berg MD3 & &
Performance Criteria Joint
probability

Prob. of “good”

performance
C-statistic >0.70 100%
98.3%
Calibration slope 0.80to0 1.20 97.1%
Calibration-in-the-large -0.587 to 0.587 85.5%



-
Developing generalizable prediction models

StepW|Se eStII | |at|0| | procedure (research by dr. de Jong)
N

N

« Fitting of a pre-specified GLM in each study -
« Evaluation of performance using IECV

« Loss = f(overall performance in
hold-out studies, between-study variation)

« Expand (or reduce) model until the overall
loss no longer decreases

* Implementation in “metamisc”




Developing generalizable prediction models

Further extensions

* ks
* *
* gk

« Methods to adjust for measurement error in IPD-MA

« Methods to disentangle case-mix variation from invalid _
predictor effects Re CoD ID

« Methods to account for missing participant-level data
in IPD-MA

https://recodid.eu/



Treatment effect modelling

Improving predictions of absolute treatment effect
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-
Background
Individualized absolute treatment effects provide a natural
starting point to engage in shared decision making

Requirements
» Move to the absolute risk scale

« Adjust for individual patient characteristics
* Consider counterfactual outcomes

Y @TPA_Debray %l% UMC Utrecht



.
Background

Individualized absolute treatment effects provide a natural
starting point to engage in shared decision making

Two important sources of information (in RCTs):

* Prognostic variables
predicting outcome risk on reference treatment

* Treatment variables
with potential for effect modification

Y @TPA_Debray %l% UMC Utrecht



Background

An example: The SYNTAX score Il

“The SYNTAX score Il is a clinical tool that combines clinical variables with
the anatomical SYNTAX score, providing expected 4-year mortality for
both coronary artery bypass grafting (CABG) and percutaneous coronary
intervention (PCl) — thus recommending either PCI only, CABG only or
equipoise (n treatment based on long-term mortality.”

DOI: 10.21037/acs.2018.07.02

Y @TPA_Debray %l% UMC Utrecht



http://www.annalscts.com/article/view/16517/16758

Background

SYNTAX SCORE II 4-year mortality SYNTAX Score IT questions
100 Py
SYNTAX Score 1 (&) ]
80 Age (years) '@ I:I
. crcl '@ I:I mL/min
< 60
z
g
E oy
3 LVEF (%) @ ]
< 40
Left Main @ O ne () ves
20
Gender O male ) female
0.6%
T ] T —~
0 20 40 60 80 100 CopPD 1/ Cne () yes
Total points
Nomeogram depicting predicted 4-year mortality as a function of the SYNTAX IT Score for patients proposed to undergo myocardial revasculanization PVD G) O no O ves

{CABG or PCI).

Adapted from Faroog et al., The Lancet, 2013 Feh 23:381(9867):638-50

SYNTAX Score 1T Calculate

(9]



.
Background

SYNTAX Score II

SIINIAALL

Decision making -between CABG and PCI- guided by the SYNTAX Score IT to he endorsed by the Heart Team.

PCI

SYNTAX Score II: 46.6

PCI 4 Year Mortality: - .
Absolute treatment effect is

= 065 19.4% in favor of CABG

CABG 4 Year Mortality:

Treatment recommendation ':B': CABG or PCT

Y @TPA_Debray il% UMC Utrecht
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Problem definition

« Randomized Clinical Trials are designed for estimating relative
treatment effects (e.g. RR, OR)

« (Can we use RCT data to predict more individualized absolute
treatment effects?

Y @TPA_Debray



Development of treatment effect models

Aim: To compare regression modeling methods on their

diisceao
ability to predict individual absolute treatment effect

Investigation of treatment effect models
Based on logistic regression
= Global: a single model for the whole population

= Partitioning: multiple simple models for partitions
of the population

Y @TPA_Debray



Global models

= Absence of HTE (risk magnification)
logit(P(Y; = 1|z, t; = 0)) = fo + /B = n; #df = p+2

0; = P(Y; = 1|”71)) = 1+ e—(m+p5e) B 1+e

= Presence of HTE (individual treatment-covariate interactions)

logit(P(Y; = 1|@;,1;)) = fo + t:if1 + & Bm + iz} B2 #df = 2p+2

= Presence of HTE (interaction between treatment and baseline risk)

logit(P(Y; = 1|ni, ;) = Yo + tiv1 +mi + tif () #df = p+3+(1+)
Y @TPA_Debray



B —
Partitioning models

» Model-based recursive partitioning
= Start with a simple global model  logit(P(Y; = 1|)) = 5y + t:8:
= Form partitions By in the spaceof ¥ = X; x ... x X,
such that logit(P(Y; = 1|B,)) = Bo» + t:51,  holds
* |mplemented as
1. Variable-by-variable subgroup selection (single split)
2. Single tree
3. Random forest

Y @TPA_Debray



Methods for treatment effect modelling

Methods Equations Estimation

Global

Overall absolute treatment effect (Overall) - ML

Risk magnification (2),(3) ML, Elastic net
marginal treatment effect (RMm)

Risk magnification (1),(2),(3) ML, Elastic net
conditional treatment effect (RMc)

Baseline risk modifier approach (2),(5) ML, Elastic net
linear treatment interaction (BA _linear)

Full modeling (FM) (4) ML, Elastic net,

HGL, Boosting

Partitioning

Single subgroup (6) MOB stump

Single tree (6) MOB

Random forest see [17] pMOB

) @TPA_Debray ML = Maximum Likelihood, HGL = Hierarchical Group Lasso
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Empirical example

 RCT with 1:1 allocation ratio (N = 512)

« Population: clinically diagnosed acute otitis media (AOM) in
children 6 months to 5 years of age

* Intervention: amoxicillin
« Qutcome: fever or ear pain was after 3 days’ follow-up

« Baseline data on: treatment received, sex, presence of
recurrent AOM, fever, bilateral occurrence, ear pain, presence
of a runny nose, cough, tympanic membrane abnormality, and

age

y @TPA_Debray



Empirical example

Brier score for leave-one-out predictions Full model Iing Partitioning
0.206 -
9 . . .
8 0.204-
w L L
ks I I
@ 0.202 - T
0.200 - t .
R Y Q QD > QD Y\Q}- o~ o =R & &
& ’ o b3 & © A\ &
[e) Q-.@(Q Q—g\o 4 o erb's‘ 3 Q’é\ 7 <(\& 4 Q\S\ / ¢ \§? %\)00) Q\
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Empirical example

Brier score for leave-one-out predictions Full modelling without penalization

0.206 -
2 I Full modeling |
o0 0.204 - : 5 5
@ | | with penalization .
2 .
@ 0.202- T
0.200 -
» Qv W N\ e~ Qv eq,\ o~ 2 R & R
S S S VRN 3 S S
o & & ¢ ¢« < A Y A
PN

Y @TPA_Debray



Simulation study

* Logistic data generating mechanism
= 1.1 allocation ratio
= 20% event rate
= 6 covariates with a main effect (MVN with rho = 0.3)
« Variable simulation parameters
= sample size 250 or 2500
= presence/absence of average relative treatment effect
= number and size of treatment-covariate interactions
= absence/presence of (6) noise variables



-
Simulation study results (1 interaction)

Average root Mean Squared Prediction Error (rMSPE)
of the predicted absolute treatment effect

Main treatment effect

O Overfitting

0.1254
0.100-
w ¥ ¢ g e 0 noise vars
(025 - i f i % §
0078 @ Risk magnification | TN
0.050- *
L Full modelling only improves
(] o 4. .
3 prediction in large RCTs, but
0.025 1 1 [ 1 1 1 1 1 1 1 1 [ M M M
O I penalization is needed
(&) Q\@@ Q\@ \\(\Q"b -\\QQ’% (<® QQ % RS %\300) Q

Y @TPA_Debray & o
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Simulation study results (3 interactions)

Average root Mean Squared Prediction Error (rMSPE)
of the predicted absolute treatment effect
Main treatment effect

0.12-

* 0 noise vars

rMSPE
o
3
|
suonoeIBUI §

]

0.06 - T = x
t ; 3 B
VRN VI VR G S SR
PO RO D & & NS
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Conclusions

= Small RCTs
« Hard to improve beyond risk-magnification

« However, the price to pay to allow for treatment-covariate
interactions was small when using both shrinkage and
selection, especially for the hierarchical group lasso (HGL)

= Large RCTs
« Shrinkage and selection still needed
 Allowing for all interactions was beneficial

y @TPA_Debray



Conclusions

« Baseline risk modifier approach, variable-by-variable
subgroup, and single MOB were always outperformed

« Random forest MOB performed relatively well given the
simulation settings

Y @TPA_Debray



Next steps

* Improving development and validation in single study
» Penalization of absolute treatment benefit
» Machine Learning with assumptions
« Adjusting for competing risk
« Quantifying accuracy of absolute treatment benefit
» Evidence synthesis
» Meta-analysis of individual participant data and published AD
« Meta-analysis of randomized and observational studies
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