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Prediction models: dynamic world

Waves of new biomarkers and prediction models
 Increasing pressure for their evaluation

« Recognition of the importance of external validation
» Performance of models is likely to be variable

 Individual patient data: insight why models vary in
performance or to build more robust models

« Improvements in methodology



Prediction

Risk prediction = foreseeing / foretelling
... (probability) of something that is yet unknown

Turn available information (predictors) into a statement
about the probability:

... of having a particular disease -> diagnosis
... of developing a particular event -> prognosis

Use of prognostic information:
— to inform patients and their families
— to guide treatment and other clinical decisions

— to create risk groups ::
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Survival curves / Kaplan Meier
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Figure 1: Recurrence-free survival (A) and overall survival (B) in the pooled series
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Prediction

What is a good model?

» Generates accurate predictions in individuals from
potential population(s) for clinical use

 Ability to discriminate between different risk groups

« Improves patient outcomes by informing treatment
decisions
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Prediction problems

Most models are not as good as we think

* Quality of many prognostic modelling studies is poor
— Limited sample size
— Incomplete registrations & reporting
— Absent study protocols
» Transportability of many models is limited
— Case-mix variation across populations
— Differences in measurement methods
— Time-varying predictor effects
— Changes in standards of care and treatment strategies

 Lack of external validation
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The rise of big data

What is ‘big data’?

« Meta-analysis of individual participant data (IPD) from
multiple studies

« Analyses of databases and registry data containing e-
health records

Data for thousands or even millions of patients from
multiple practices, hospitals, or countries.

Example: QRISK2 was developed using e-health data from the QRESEARCH
database using over 1.5 million patients (with over 95000 new cardiovascular
events) from 355 randomly selected general practices

s
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Prediction research using big data

Why do we need ‘big data’?

« Development of better prediction models
— Reduced risk of overfitting
— Ability to address wider spectrum of patients
— Ability to investigate more complex associations

* More extensive testing of model performance

— Ability to externally validate across multiple settings
(also upon model development)

— Abillity to investigate sources of poor or inconsistent model
performance

— Ability to assess usability of prediction models across

different situations %ﬁ%



Prediction research using big data
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Prediction research using big data

Main challenges

* Missing data
— Partially missing data within studies
— Systematically missing data within studies
— Entire study missing (e.g. non-publication)
* Between-study heterogeneity
— Qutcome occurrence
— Predictor effects
— (Change in) model performance
« Combination of IPD and AD
— Published prediction models

— Published predictor effects gﬁ%
— Published estimates of (increased) model performance



Prediction research using big data

What is heterogeneity?

Differences in outcome occurrence, predictor effects and/or
model performance across studies, settings, ...

Case-mix variation (spectrum effect)
Missed interactions and non-linear trends of predictors

Biomarkers: different measurement method, recording
time point or cut-off across settings

Different standards of care and treatment strategies
Different startpoints (e.g. due to screening)

Typically, heterogeneity is explored using meta-analysis
methods with mixed or random effects %h,:%



Model development & validation

Dealing with heterogeneity

% UMC Utrecht
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Model development using big data

Problem: random effects summaries are of limited value

 Predictor effects and/or baseline risk may take different
values for each included study

« Which parameters to use when validating/implementing
the model in new individuals or study populations?

* When do study populations differ too much to combine?

Need for a framework that can identify the extent to which
aggregation of IPD is justifiable, and provide the optimal
approach to achieve this.

s



Model development using big data

Recommendations from Debray et al & Ahmed et al.
« Allow for different baseline risks in each of the IPD studies

— Account for differences in outcome prevalence (or
incidence) across studies

— Examine between-study heterogeneity in predictor effects

and prioritize inclusion of (weakly) homogeneous
predictors

— Appropriate intercept for a new study can be selected
using information on outcome prevalence (or incidence)

Implement a framework that uses internal-external
cross-validation

s
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Model development using big data

Step 1: Different choices to combine IPD

« Merge all data into one big dataset and ignore
heterogeneity

« Allow heterogeneous baseline risk across studies
— assume random effects distribution for the intercept terms
— estimate study-specific intercept terms

« Advanced modeling of predictor effects is also possible
— Nonlinear effects
— Interaction terms

s
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Model development using big data

Step 2: Choosing an appropriate model intercept when
implementing the model to new individuals

« Average intercept term
(e.g. pooled estimate)

« Updating of intercept term
(requires patient-level data)

* Use intercept of included study
(e.g. based on outcome occurrence)

Propose which intercept term to use in new populations
Il More difficult in case of heterogeneous predictor effects

s



...
Model development using big data

Step 3: Model evaluation to check whether...

 Strategy for estimating predictors and intercept is
adequate

 Strategy for choosing intercept term (and predictor
effects) in new study population is adequate

* Model performance is consistently well across studies
— Discrimination
— Calibration

=> Use of internal-external cross-validation



Internal-external cross-validation

Pre-defined development strategy
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Model development using big data

Example 1 (diagnosis of deep vein thrombosis; N=12)

Strategies evaluated:
 Inclusion of 2 predictors (gender & recent surgery)

* Modelling of intercept term
— Ignore heterogeneity (“stacking”)
— Meta-analysis (“random effects”)
— Stratify intercept term across studies

* Model implementation
— Average intercept (stacking; random effects)

— Select estimated intercept term based on outcome
occurrence

Assessment of AUC and calibration-in-the-large (CITL) gﬁ%



Model development using big data
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Model development using big data

Example 2 (prognosis of breast cancer; N=38)

+ Strategy 1: Develop using Royston-Parmar and implement
with baseline hazard estimated in validation study

+ Strategy 2: Develop using Royston-Parmar and implement
with average baseline hazard from developed model

+ Strategy 3: Develop using Royston-Parmar and implement
with the estimated baseline hazard from the closest
geographical country



C-statistic

Model development using big data
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Pg = Joint probability of “good performance”
(C>= 0.7 and calibration slope between 0.9 and 1.1)

=> Updating of baseline hazard recommended!
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Model validation using big data

Validation of existing model(s)

Evaluate model discrimination and calibration separately
within each IPD set

Investigate whether model performance is adequate and
consistent across populations/subgroups/settings

Heterogeneity in performance can be expected!

(not necessarily related to misfit of model coefficients)

— Need to adjust for case-mix differences

— Need to inspect relatedness between included populations
— Random effects meta-analysis recommended

If possible, make head-to-head comparisons with
existing models

Evaluate need for updating and required updating
strategy %b,:%



Missing data

Why is relevant in 'big data’ and what can we do about it?

% UMC Utrecht



Dealing with missing data

The problem of heterogeneity

 Traditional imputation methods do not (properly)
accommodate for differences in predictive associations

* As aresult, imputation may mask the actual extent of
between-study heterogeneity

=> Subsequent analyses (e.g. model development and
validation) may lead to over-optimistic results!



Dealing with missing data

Partially missing data (missing at random)

« Imputation

— Two-stage (stratified per study)
« Fully stratified vs. Stratification of intercept term only

— One-stage (hierarchical approach)
« Homoscedastic vs. Heteroscedastic error variance
 Fully Bayesian vs. Large sample approximations

* Analysis
— Two-stage (stratified per study)
— One-stage (hierarchical approach)

Note that several combinations are possible! ::



Dealing with missing data

Partially missing data
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Dealing with missing data

Partially missing data

« Acknowledging heterogeneity during imputation is
paramount if subsequent analysis aims to explore its
presence

— Inappropriate to ignore clustering of subjects
— Inappropriate to include a study dummy variable in the
imputation model

« One-stage approach for imputation and analysis most
powerful, but computationally very complex

« Two-stage imputation performs relatively well, and can
be implemented fairly straightforward



Dealing with missing data

Systematically missing data

Two-stage imputation and traditional one-stage imputation
no longer feasible (as within-study variance is unidentifiable)

— Need for more advanced one-stage imputation methods

= Implementation of generalized linear mixed effect model

= Allow for random effects
(modeled by multivariate normal distribution)

= Allow for between-study covariance
(modeled by an inverse Wishart distribution)

= Implement diffuse prior distributions
= Alternative strategy: joint modeling



Dealing with missing data
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1. Introduction

An important aim in diagnostic and prognostic research is the development of clinical prediction models.

; ; ; . 4 These madels aim o predict for an individual whether a certain outcome is present (diagnosis) or will
StatlSt[CS n MedlC[nel 32(28)1 4890 905' oceur (prognosis), respectively based on multiple predictors observed in the individual, These predictors
.. H may range from individual characteristics, signs and symptoms, to results of more invasive or costly mea-

d ol 10- 1002/S| m. 5894 sures such as imaging, electrophysiology, blood, urine, coronary plaque, or even genetic markers | 1-3).

The development of a novel prediction model, diagnostic or prognostic, typically requires a set with so-
called individual participant data (IPD). This dataset contains for each study participant the observed
predictor values and outcomes to be predicted, and is ideally obtained from a prospective cohort study.




Take home messages
Major advantages IPD-MA

« Improving the performance of novel prediction models
across different study populations

« Attain a better understanding of the generalizability of a
prediction model

» Exploring heterogeneity in model performance and the
added value of a novel (bio)marker

Unfortunately, most researchers analyze their IPD as if
representing a single dataset!



Take home messages
Remaining challenges in IPD meta-analysis

« IPD-MA no panacea against poorly designed primary
studies

— Prospective multi-center studies remain important

« Synthesis strategies from intervention research cannot
directly be applied in prediction research (due to focus
on absolute risks)

« Adjustment to local circumstances often needed

— One model fits all?
— Methods for tailoring still underdeveloped

New methods are on their way!



