Prognosis of infectious diseases

A plea for meta-analysis of individual participant data

Thomas Debray

About me

Background in biostatistics, epidemiology & machine learning

- Assistant Professor
- Founder
- Affiliated Researcher
- Honorary Senior Research Associate
- Honorary Departmental Senior Research Fellow

Estimate something that is yet unknown

- Presence of a certain disease (diagnosis)
- Future occurrence of a particular event (prognosis)

Calculate the absolute risk (probability) for distinct individuals

Example: What is my risk of having a coronavirus-19 infection?

Equally

Impossible	Unlikely	Likely	Likely	Certain
0	1	1/2	34	1
0	0.25	0.5	0.75	1
0%	25%	50%	75%	100%
\bigcirc	\bigcirc			\bigcirc

What is my risk of being diseased with coronavirus-19?

COVID-19 Early Warning Score (COVID-19 EWS)

Parameters	Assessment	Score		
Signs of pneumonia on CT	Yes	5		
History of close contact with COVID-19 confirmed patient	Yes	5		
Fever	Yes	3		
Age	≥ 44 years old	1		
Sex	Male	1		
Tmax ^a	≥ 37.8 °C (100 °F)	1		
Meaningful respiratory symptoms (including cough, expectoration, and dyspnea)	≥ 1 sympotom	1		
NLR ^b	≥ 5.8	1		
Highly suspected patient				
*SARS-CoV-2 nucleicacid detection positive is the independent diagnostic indicator.				

a Tmax: the highest body temperature from illness onset to first hospital admission bNLR: neutrophil-to-lymphocyte ratio

Marcon Marcon States and States

@TPA Debray

What is my risk of being diseased with coronavirus-19? Quite low!

COVID-19 Early Warning Score (COVID-19 EWS)

Why do we predict?

To support clinical decision-making for individual patients

- Inform patients and their families
- Decide upon further testing (e.g. magnetic resonance imaging)
- Decide upon patient referral (e.g. to secondary care)
- Targeting prevention strategies (e.g. vaccination)
- Guide treatment decisions (e.g. chemotherapy)

How to develop a prediction model?

@TPA Debray

Adopt regression modeling and/or machine learning methods

The reality of (most) prediction models

Many prediction models perform more poorly than anticipated, do not affect clinical practice, or are implemented for the wrong reasons

- Small & poor quality studies
- Limited variation in studied patients, settings or populations
- Lack of validity and effectiveness assessments

Prediction models for COVID-19

RESEARCH

the**bm**

OPEN ACCESS Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal

Laure Wynants,^{1,2} Ben Van Calster,^{2,3} Gary S Collins,^{4,5} Richard D Riley,⁶ Georg Heinze,⁷ Ewoud Schuit,^{8,9} Marc M J Bonten,^{8,10} Johanna A A Damen,^{8,9} Thomas P A Debray,^{8,9} Maarten De Vos,^{2,11} Paula Dhiman,^{4,5} Maria C Haller,^{7,12} Michael O Harhay,^{13,14} Liesbet Henckaerts,^{15,16} Nina Kreuzberger,¹⁷ Anna Lohmann,¹⁸ Kim Luijken,¹⁸ Jie Ma,⁵ Constanza L Andaur Navarro,^{8,9} Johannes B Reitsma,^{8,9} Jamie C Sergeant,^{19,20} Chunhu Shi,²¹ Nicole Skoetz,¹⁷ Luc J M Smits,¹ Kym I E Snell,⁶ Matthew Sperrin,²² René Spijker,^{8,9} Ewout W Steyerberg,³ Toshihiko Takada,⁴ Sander M J van Kuijk,²³ Florien S van Royen,⁸ Christine Wallisch,^{7,24,25} Lotty Hooft,^{8,9} Karel G M Moons,^{8,9} Maarten van Smeden⁸

Results: 4909 titles were screened, and 51 studies describing 66 prediction models were included (31 march 2020)

www.thomasdebray.be

FAST TRACK

Prediction models for COVID-19

Status quo: 66 prediction models

- 3 models for predicting hospital admission from pneumonia
- 47 diagnosis models for COVID-19 or COVID-19 pneumonia
 - 34 based on medical images (deep learning)
- **16 prognosis models** for predicting mortality risk, progression to severe disease, or length of stay

Prediction models for COVID-19

Critical appraisal using PROBAST

Assess risk of bias on **four domains** using "signaling questions"

- Participants (2 questions)
- Predictors (3 questions)
- Outcome (6 questions)
- Analysis (9 questions)

If risk of bias was high in at least one domain, overall risk of bias was judged to be high

Prediction models for COVID-19: critical appraisal

- Participants domain: 24/51 at high risk of bias
 - Non-representative of the target population (e.g., non-consecutive patients)
- Predictors domain: 6/51 at high risk of bias
 - Predictors not available at time of intended model use
- Outcome domain: 18/51 at high risk of bias
 - Subjective or proxy outcomes
- Analysis domain: 50/51 at high risk of bias
 - Small sample size (->overfitting & no adjustment), incomplete reporting of model performance (e.g., no calibration)

All studies at high risk of bias

PA Debray

Prediction models for COVID-19: what is the problem?

- Available data sources
 - Are often small
 - Entail a particular setting or population (e.g. single hospital)
- Prediction model studies
 - Are hastily conducted
 - Adopt inappropriate statistical methods
 - Do not adequately report methods & results

The majority of developed prediction models are unreliable and unsuitable for use in routine care.

How to move forward?

Collaborative research is urgently needed

- To defragment ongoing research activities
- To improve the overall quality and validity of COVID-19 related prediction models

3 strategies:

- Formation of international consortia
- Development of data sharing platforms
- Meta-analysis of individual participant data

Improving collaborative research

Re CoD ID

Reconciliation of Cohort Data for Infectious Diseases

Intellectual Property

 Public platform

 where cohort meta

 data can be uploaded.

 Potential users can

 contact the owners, to

 get access to the data

 (or the data is freely

 available).

@TPA Debray

Technology

"Cohort Cloud,, Hosting the data Supported by the Danish Computerome and EMBL

"PEARL, solutions - politial, ethical, administrative, regulatory, legal

www.recodid.eu

Improving collaborative research

Re CoDID

• "... we will [...] bridge infectious disease cohorts and the open science community to ensure that populations in **the global south** are not left behind by the **personalized medicine revolution**".

Improving collaborative research: Zika Virus

Zika Virus Individual Participant Data Consortium

- Global collaboration to streamline an international response to ZIKV
 - Studies and surveillance systems
 - Data from Brazil, Colombia, Ecuador, Cuba , St Martin, Martinique, Mexico, Guadaloupe, French Guyana, Honduras, Haiti, Jamaica, Panama, El Salvador, Spain, Suriname, and Venezuela
- Sharing of deidentified participant level data
 - To perform a pooled cohort analysis
 - To investigate the relation between Zika virus infection during pregnancy and adverse fetal, infant and child outcomes

Improving collaborative research: Zika Virus

Zika Virus Individual Participant Data Consortium

Epidemiology Protocol

Understanding the relation between Zika virus infection during pregnancy and adverse fetal, infant and child outcomes: a protocol for a systematic review and individual participant data meta-analysis of longitudinal studies of pregnant women and their infants and children

Improving collaborative research: COVID-19

Large consortium to validate existing models for COVID-19

- Lead by UMC Utrecht (the Netherlands)
- Summarize performance and explore sources of heterogeneity

Partners from

- Europe (the Netherlands, Switzerland, Sweden, UK)
- America (USA)
- Asia (China, Singapore)

We are looking for more partners

Acknowledgements

Slides

Prediction models for COVID-19 – Maarten van Smeden

Images

<u>Deep Learning</u> - <u>https://ai.googleblog.com/2018/05/deep-learning-for-electronic-health.html</u> <u>Probabilities</u> - <u>http://mathfor7thgrade.weebly.com/probability.html</u> <u>COVID-19 score</u> - <u>https://www.medrxiv.org/content/10.1101/2020.03.05.20031906v1</u> <u>Collaboration</u> - <u>https://www.nature.com/articles/d41586-018-06037-5</u>

